Texas A&M Engineering Experiment Station | Texas A&M Engineering Experiment  Station


SES Logo

Symposium 6.8

Mechanics of Electrochemical Systems


Siva Nadimpalli, Michigan State University
Claudio Di Leo, Georgia Institute of Technology
Shuman Xia, Georgia Institute of Technology
Kejie Zhao, Purdue University


As advanced energy systems are being developed to meet global energy needs, mechanics has emerged as a key aspect that affects the performance of energy materials and plays a crucial role in their design. Thermal stresses and mechanical degradation affect the performance and reliability of thermoelectric energy conversion and photovoltaic materials. Intercalation and reaction induced stresses and strains can influence the capacity, cyclic stability, and kinetics of chemical reactions in energy storage devices such as batteries. In particular, the performance of next-generation conversion reaction materials and solid-state electrolytes for energy storage is tightly coupled to mechanics. Mechanics of materials issues are universal and play a critical role in the performance of advanced energy materials and systems.  The aim of this symposium is to bring together leading experts in the field; to provide a platform to discuss current research developments; and to promote idea sharing.  Topics addressed in this symposium will include (but are not limited to):  
i) Theoretical studies: DFT, Molecular Dynamics, and continuum models of electro-chemical-mechanical systems  
ii) Experimental studies: Characterization of basic mechanical properties, degradation mechanisms, and measurement of evolution of mechanical properties 
iii) Studies which combine theory and experiments, as to explore how electrochemistry and mechanics phenomena couple together and how they affect the performance of energy systems
iv) Studies on mechanics-guided innovative designs for improved performance of energy systems.