Lung and Diaphragm-Protective Ventilation
What, Why, and How?

Ewan C. Goligher MD PhD
Assistant Professor of Medicine, University of Toronto
Attending Physician, MSICU, Toronto General Hospital
Scientist, Toronto General Hospital Research Institute
Disclosures

- Conflicts of Interest
 - Equipment from Timpel
 - Equipment and personal fees from Getinge
Modern Mechanical Ventilation Saves Lives

<table>
<thead>
<tr>
<th>Group</th>
<th>Period of admission</th>
<th>No. of cases</th>
<th>Died</th>
<th>Died within three days</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>July 21–Aug. 25</td>
<td>31</td>
<td>27 (87%)</td>
<td>19 (70%)</td>
</tr>
<tr>
<td>II</td>
<td>Aug. 26–Sept. 8</td>
<td>50</td>
<td>26 (52%)</td>
<td>7 (27%)</td>
</tr>
<tr>
<td>III</td>
<td>Sept. 8–Sept. 23</td>
<td>50</td>
<td>24 (48%)</td>
<td>8 (33%)</td>
</tr>
<tr>
<td>IV</td>
<td>Sept. 23–Oct. 5</td>
<td>50</td>
<td>19 (38%)</td>
<td>10 (53%)</td>
</tr>
<tr>
<td>V</td>
<td>Oct. 6–Oct. 21</td>
<td>50</td>
<td>13 (26%)</td>
<td>7 (54%)</td>
</tr>
<tr>
<td>VI</td>
<td>Oct. 21–Nov. 6</td>
<td>50</td>
<td>18 (36%)</td>
<td>10 (55%)</td>
</tr>
<tr>
<td>Total II–VI</td>
<td></td>
<td>250</td>
<td>100 (40%)</td>
<td>42 (42%)</td>
</tr>
</tbody>
</table>
Protective Mechanical Ventilation Saves Lives

Webb & Tierney *ARRD* 1974

ARDSNet *NEJM* 2000
Prolonged Mechanical Ventilation Leads to Disability

Hodgson et al *Intensive Care Med* 2017

Unroe et al *Ann Intern Med* 2011
The Diaphragm and ICU Outcomes

P = .04

Baseline diaphragm thickness
- >50th Percentile (2.3 mm)
- ≤50th Percentile (2.3 mm)

No. at risk
- >2.3 mm: 88
- ≤2.3 mm: 105

Duration of Follow-up, d
- 0: 88
- 7: 34
- 14: 13
- 21: 8

Sklar et al JAMA Netw Open 2020
The Diaphragm and ICU Outcomes

Log-rank $P = .09$

Baseline diaphragm thickness
- $>50\text{th Percentile (2.3 mm)}$
- $\leq 50\text{th Percentile (2.3 mm)}$

<table>
<thead>
<tr>
<th>Duration of Follow-up, d</th>
<th>No. at risk $>2.3 \text{ mm}$</th>
<th>No. at risk $\leq 2.3 \text{ mm}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>87</td>
<td>102</td>
</tr>
<tr>
<td>15</td>
<td>54</td>
<td>76</td>
</tr>
<tr>
<td>30</td>
<td>29</td>
<td>47</td>
</tr>
<tr>
<td>45</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>60</td>
<td>15</td>
<td>22</td>
</tr>
<tr>
<td>75</td>
<td>10</td>
<td>16</td>
</tr>
<tr>
<td>90</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Sklar et al JAMA Netw Open 2020
Ventilator-Induced Diaphragm Dysfunction

Abnormalities of diaphragmatic muscle in neonates with ventilated lungs.

Knisely AS¹, Leal SM, Singer DB.

47 days of MV

3 days of MV
Diaphragm Myotrauma

Goligher et al. AJRCCM 2015
Diaphragm Myotrauma Associated with Delayed Liberation from Ventilation
Lung and Diaphragm-Protective Ventilation

- Mechanical Ventilation
 - Volutrauma
 - Homeostasis
 - Clinical outcomes
 - Myotrauma

Lung-protective ventilation & ECLS
Minimizing lung stress/strain

Diaphragm-protective ventilation & ECLS
Monitoring/optimizing respiratory effort & synchrony
Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure

Ewan C Goligher, Laurent J Brochard, W Darlene Reid, Eddy Fan, Olli Saarela, Arthur S Slutsky, Brian P Kavanagh, Gordon D Rubenfeld, Niall D Ferguson
Over-assistance Myotrauma: Disuse Atrophy

Diaphragm

Pectoralis major

Under-Assistance Myotrauma: Load-Induced Injury

Reid et al. J Appl Phys 1994
Eccentric Myotrauma

Concentric

Eccentric

Gea et al. *Arch Bronchopneumol* 2009
Eccentric Myotrauma

Reverse triggering

Premature cycling
Myotrauma: Clinical Investigation
Inspiratory Effort and Outcome

![Graph showing duration of mechanical ventilation (days) against mean diaphragm thickening fraction over first 3 days of MV. The graph includes a target window indicated by arrows.](Goligher et al AJRCCM 2018)
Diaphragmatic myotrauma: a mediator of prolonged ventilation and poor patient outcomes in acute respiratory failure

Ewan C Goligher, Laurent J Brochard, W Darlene Reid, Eddy Fan, Olli Saarela, Arthur S Slutsky, Brian P Kavanagh, Gordon D Rubenfeld, Niall D Ferguson

Goligher et al Lancet Respir Med 2019
Diaphragm-Protective Ventilation in 2019

Optimize respiratory effort

- Over-assistance and disuse atrophy
- Under-assistance and load-induced injury

Myotrauma risk

Patient inspiratory effort

+ Flow & Vt (AC-VC), Pressure (AC-PC)
+ Sedation

Optimize patient-ventilator synchrony

- Eccentric contractions due to premature cycling and reverse triggering
- Ineffective efforts and over-assistance due to delayed cycling

Myotrauma risk

Before patient Ventilator cycling After patient

Sedation, Flow & Vt (AC-VC), I:E ratio (AC-PC), E_{sens} (PSV)

Goligher Intensive Care Med 2019
Lung and Diaphragm-Protective Ventilation

Mechanical Ventilation -> Volutrauma -> Homeostasis -> Clinical outcomes

Myotrauma

Lung-protective ventilation & ECLS
Minimizing lung stress/strain

Diaphragm-protective ventilation & ECLS
Monitoring/optimizing respiratory effort & synchrony
Excess Lung Stress

\[P_L = P_{\text{airway}} - P_{\text{pleural}} \]

Inhomogeneous Lung Stress
Challenge: Managing Respiratory Drive

- P-SILI

 - Respiratory drive & effort

 - Myotrauma
LDPV: How

- Ventilation targets
- Monitoring
- Methods for controlling respiratory drive and effort
LDPV Goals

Position Statements

• No single universally applicable one-size-fits-all setting for optimal mechanical ventilation
• Protecting the lung should be prioritized over protecting the diaphragm
• Respiratory effort should be monitored routinely
LDPV Goals

Proposed LDPV Goals
• Limit cyclic lung stress
• Limit regional cyclic lung stress
• Maintain low-normal respiratory effort
• Avoid breath stacking dyssynchrony
• Aim for expiratory synchrony
Monitoring for LDPV Strategy

- Flow
- P_{aw}
- P_{es}
- P_L

- Respiratory effort
- Risk of myotrauma
- Risk of excess regional lung stress

- Cyclic lung stress
- Risk of volutrauma
Challenge: Managing Respiratory Drive

- Ventilator flow & pressure
- P-SILI
- ECLS
- Respiratory drive & effort
- Sedation
- Myotrauma
Lung and Diaphragm-Protective Ventilation

- Mechanical Ventilation
- ECLS
- Sedation
- Volutrauma
- Homeostasis
- Myotrauma
- Lung-protective ventilation & ECLS
 - Minimizing lung stress/strain
- Clinical outcomes
 - Diaphragm-protective ventilation & ECLS
 - Monitoring/optimizing respiratory effort & synchrony
Questions?

EWAN.GOLIGHER@UTORONTO.CA