



# BIOGAS Energy and nutrient solutions

#### Sari Luostarinen

WP leader - Manure Energy Use

Principle Research Scientist, PhD MTT Agrifood Research Finland







# Acknowledgements

- This work was only possible because of the following excellent colleagues:
  - Mats Edström, Mikael Hansson, Henrik Olsson, Johan Anderson, Andras Baky – JTI, Sweden
  - Karola Elberg, Andrea Schüch Rostock University, Germany
  - Ksawery Kuligowski, Dorota Skura, Marek Ziółkowski,
     Andrzej Tonderski Pomcert, Poland
  - Sigitas Lazauskas, Virmantas Povilaitis, Vita Tilvikiene –
     LAMIMC, Lithuania
  - Valters Kazulis, Arvids Celms, Vilis Dubrovskis LLU, Latvia
  - Argo Normak, Tauno Trink, Ahto Oja EMU, Estonia
  - Saija Rasi, Sanna Marttinen, Ville Pyykkönen, Eeva Lehtonen – MTT, Finland
  - Knud Tybirk ABP, Denmark



























# Biogas technology...

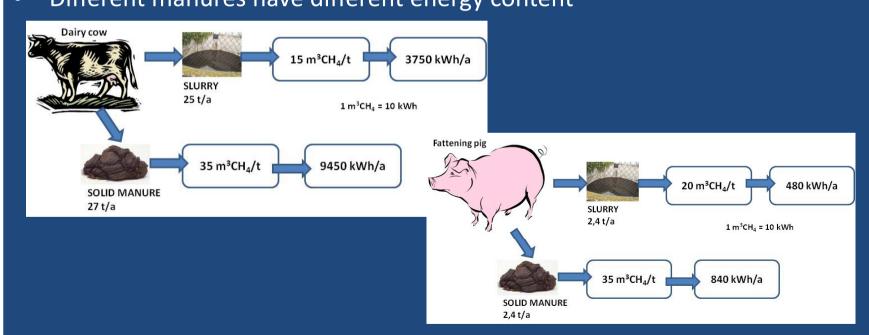
- ...makes use of microbiological degradation of organic materials, such as manure, in anaerobic, closed digesters
- ...produces two end-products
  - Energy-rich biogas (methane + carbon dioxide)
  - Nutrient-rich digestate (more soluble nitrogen)
- ...enables mitigation of emissions from manure with other proper choices
- ...can be designed for different scales from farms to large plants







Photos: Sari Luostarinen / MTT





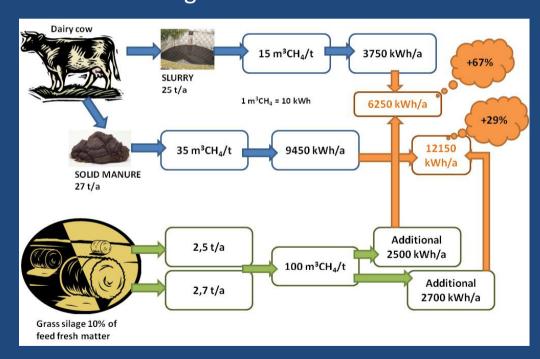



# Biogas from manure – energy(1)

- Undegraded organic matter in manure can be turned into biogas
- Different manures have different energy content










# Biogas from manure - energy (2)

Energy yield of manure based biogas can be increased with suitable co-

substrates









# Biogas from manure -**Nutrients and emissions**

- Nutrients are preserved during digestion
  - Organic nitrogen mineralised into soluble and readily plant-available ammonium
  - Possibility to recycle also nutrients from other organic materials (cosubstrates)
- Direct GHG emissions from manure can be reduced
  - Also reduction of GHGs by replacing fossil energy
- Ammonia emissions and nutrient run-off can be reduced



- Quick collection from barn
- Sufficient retention time in digester
- Post-digestion
- Covered storage
- Optimal timing and method for digestate spreading
- Optimal dose of digestate as fertiliser









# Manure energy potential in the BSR

| Country   | Manure      | Theoretical EP |             | Techno-economical EP |             |
|-----------|-------------|----------------|-------------|----------------------|-------------|
|           | (t/a)       | Min (TWh/a)    | Max (TWh/a) | Min (TWh/a)          | Max (TWh/a) |
| Finland   | 13 543 967  | 2.41           | 5.20        | 0.850                | 1.78        |
| Sweden    | 21 743 000  | 3.38           | 7.04        | 1.34                 | 2.78        |
| Denmark   | 34 395 100  | 4.38           | 9.13        | 2.19                 | 4.57        |
| Germany*  | 23 765 348  | 2.95           | 6.16        | 1.63                 | 3.41        |
| Poland    | 69 775 669  | 20.0           | 36.8        | 9.32                 | 18.62       |
| Lithuania | 12 321 471  | 2.69           | 5.69        | 0.782                | 1.65        |
| Latvia    | 7 585 496   | 1.16           | 2.62        | 0.512                | 1.17        |
| Estonia   | 3 621 000   | 0.677          | 1.52        | 0.352                | 0.781       |
| TOTAL     | 186 751 051 | 37.65          | 74.16       | 16.98                | 34.76       |

<sup>\*</sup>Mecklenburg Western-Pommerania & Schleswig-Holstein only

Including cattle, pig and poultry manure In more detail: http://www.balticmanure.eu/download/Reports/bm\_energy\_potentials\_web.pdf







### Manure energy potential in the BSR

| Country                                                   | Manure      | Theoretical EP |             | Techno-economical EP |                |  |
|-----------------------------------------------------------|-------------|----------------|-------------|----------------------|----------------|--|
|                                                           | (t/a)       | Min (TWh/a)    | Max (TWh/a) | Min (TWh/a)          | Max (TWh/a)    |  |
| Finland                                                   | 13 543 967  | 2.41           | 5.20        | 0.000                | 1 70           |  |
| Sweden                                                    | 21 743 000  | 3.38           | 7.04        |                      |                |  |
| Denmark                                                   | 34 395 100  | 4.38           | 9.13        | RES pro              | RES production |  |
| Germany*                                                  | 23 765 348  | 2.95           | 6.16        | 571 TWh/a            |                |  |
| Poland                                                    | 69 775 669  | 20.0           | 36.8        | in the               | e BSR          |  |
| Lithuania                                                 | 12 321 471  | 2.69           | 5.69        | (20                  | 10)            |  |
| Latvia                                                    | 7 585 496   | 1.16           | 2.62        | (_3                  |                |  |
| Estonia                                                   | 3 621 000   | 0.677          | 1.52        | 336                  | 0.7            |  |
| TOTAL                                                     | 186 751 051 | 37.65          | 74.16       | 16.98                | 34.76          |  |
| *Mecklenburg Western-Pommerania & Schleswig-Holstein only |             |                |             |                      |                |  |

Including cattle, pig and poultry manure In more detail: http://www.balticmanure.eu/download/Reports/bm\_energy\_potentials\_web.pdf







# Manure energy use as biogas in 2012

| Country   | No of<br>biogas<br>plants | No of biogas<br>plants treating<br>manure | Amount of<br>manure<br>digested<br>(t/a) |
|-----------|---------------------------|-------------------------------------------|------------------------------------------|
| Finland   | 35                        | 17                                        | 180 000                                  |
| Sweden    | 50                        | 40                                        | 350 000                                  |
| Denmark   | 150                       | 80                                        | 2 500 000                                |
| Germany   | 7320                      | NR                                        | 3 500 000                                |
|           |                           |                                           | 6 000 000                                |
| M-WP*     | 325                       |                                           |                                          |
| S-H**     | 561                       |                                           |                                          |
| Poland    | 28                        | 16                                        | 269 000                                  |
| Lithuania | 5                         | 0                                         | 0                                        |
| Latvia    | 30                        | 30                                        | 725 000                                  |
| Estonia   | 10                        | 2                                         | 140 000                                  |

4.2 million t manure/a to biogas out of 187 million t/a available (excluding the two German states)

SIGNIFICANT POTENTIAL
STILL AVAILABLE

NR = not reported



<sup>\*</sup> Mecklenburg-Western Pommerania; \*\*Schleswig-Holstein





# Manure based biogas

Incentives and bottlenecks NOW





# Incentives for manure biogas in the BSR

- Investment grants
  - Usually max 30% of the investment costs, but may come with prerequisites
- Feed-in tariffs / fixed prices
  - Vary significantly between BSR, detailed prerequisites
- Tax exemptions
- Other observations
  - Manure valued differently in different countries
    - EXAMPLE 1: the target in Denmark is to have 50% of manure in energy production (=biogas) by 2020 subsidies available / planned to promote manure based biogas in particular
    - EXAMPLE 2: the feed-in tariff for biogas electricity in Finland is not available for plants with less than 100 kVA of efficiency rules out all smaller, manure based biogas plants







# Bottlenecks for manure biogas in the BSR

- Profitability
  - High investment cost, mostly rather modest subsidies
  - Manure alone not sufficient for income need for co-substrates
- Changing political scene and legislation
  - Avoidance of risky investments due to uncertainties
- Heavy permission processes (in some countries)
- Value for nutrient recycling and avoided emissions
- Lack of knowledge
- Attitudes: NIMBY









# Technological bottlenecks

- Significant share of the energy potential in solid manure
  - Ratio of slurry : solid manure about 50:50 in the BSR
    - Differences between countries: 80% slurry in Denmark, 10% slurry in Poland
  - Better solutions for solid manure are needed
    - Co-digestion with slurry
    - Pre-treatments to pulp into pumpable form and to increase degradability
      - Beneficial also for other ligno-cellulosic materials
    - Possibly new digester designs for high dry matter contents
      - E.g. two-stage process (separate hydrolysis and leachate digestion)
- Challenges with plant operation
  - Technical problems: no sufficient knowhow
  - No operation strategy







#### Incentives for the future

WHAT SHOULD BE DONE?





# Recommendations for manure based biogas

#### Farmer / entrepeneur

- Plan biogas plants to answer to farm-specific requirements and ensure constant feed supply
- Take time to find all possibilities to increase profitability
- Understand manure based biogas as part of the entire manure management chain in order to take full advantage of all the benefits involved

#### Policy / decision maker

- Understand manure based biogas as part of the entire manure management chain in order to support the right actions
- Create well-defined and stable subsidy systems and give extra credit to solutions including manure
- Create support for not only renewable energy, but also nutrient recycling and emission mitigation



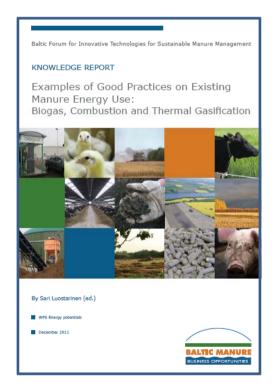




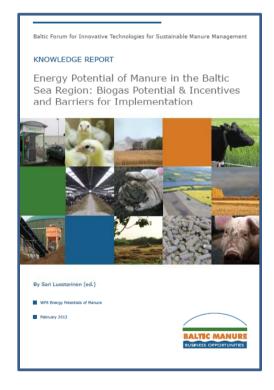
### Manure based biogas offers...

- Renewable energy
- Recycling of nutrients from different organic by-products
- Enhancement of nitrogen utilisation
- Mitigation of emissions
- More efficient food production by decreasing the agricultural use of fossil fuels and mineral fertilisers

WHEN IT IS DONE IN THE RIGHT WAY!






# More information: www.balticmanure.eu

sari.luostarinen@mtt.fi







