Advanced Technology Reliable Quality Customer Satisfaction

Development and application of CALB olivine-phosphate batteries

Advanced Technology Reliable Quality Customer Satisfaction

> Introducing CALB

> Application and research on LFP/C batteries

> Development of high energy NCM+LMFP/C batteries

> Summary

Company profile

Set up in 2008, CALB is a leading company in power Li-ion battery manufacturing for various applications.

➤A large state-owned enterprise with headquarter in Luoyang, China, and expanding globally.

➤ registered capitals \$130 million

Since 2010, an investment of \$600 million was made to build the new industrial park, which covers an area of 86 acres.

➤As going into 2014, CALB now has more than 1,700 professional staffs worldwide.

Competitiveness

One of the largest Specialized power Lithium Battery R&D and Production Project in China

EV Models Application Ranking **Top** in China

Energy Storage Application Ranking **Top** in China

Power Lithium Battery Export Ranking **Top** in China

3 Automatic Production Lines Production Capacity: 600MWH/year

One of the Top Large-capacity LFP Power Battery Manufacturer in China

Advanced Technology Reliable Quality Customer Satisfaction

Cell technology-material chemistry

> Prismatic cell

LFP
Graphite
LiPF6/carbonates
PP/PE with ceramic coating
Aluminum or plastic case

Positive active material:	NCM
Negative active material:	Graphite
Electrolyte:	LiPF6/carbonates
Separator:	PP/PE with ceramic coating

> Introducing CALB

> Application and research on LFP/C batteries

> Development of high energy NCM+LMFP/C batteries

> Summary

Cell performance- long cycle life

CAM battery-xEV

CA battery-ESS

Cell performance- rate and pulse power capability

CAM battery-xEV

Cell performance- calendar life

Capacity loss vs Storage time@RT 30% 25% $y = 0.00018 \text{ x}^{0.83563}$ $y = 0.00 | 141 x^{0.60086}$ $R^2 = 0.98634$ → 100%SOC $R^2 = 0.96574$ 20% **----**50%SOC Capacity loss $y = 0.00016 |x^{0.81544}|$ - 100%SOC Trend line $R^2 = 0.99625$ -50%SOC Trend line 10% 30%SOC Trend line 5% 0% 0 1000 2000 3000 4000 5000 6000 Storage time (days)

Natural degradation at rest

Calendar life over 10 years to match vehicle life

CALB Overview

Cell performance- high safety

CAM50FI

279±15

275±1

106±1

1111 caus 111

必中航

錮

180±1

CAM72FI

Copyright © CALB All Rights Reserved. 2013

71±1.5

Safety improvement approach

Applying cathode electrode edge protection to prevent internal short between Al foil and anode

Applying ceramic layer coating on separator/anode to prevent internal short and thermal runaway

Applying safety vent with trigger pressure to prevent rapid gas buildup within the cell which might lead to explosion

Application of LFP /C battery EV **Energy Storage Revenue Decomposition** China 15% Oversea 25% **ESS 50%** 1.1.1 P Oversea 15% Telecom 20% **EV 30%** MADE IN China 10% China 25% **Telecommunication** Oversea 10% SAARLAND pprist and orfails die Anto-angen des DOX VDE 418 SONNEN-BATTERIE

> Introducing CALB

> Application and research on LFP/C batteries

> Development of high energy NCM+LMFP/C batteries

> Summary

Advanced Technology Reliable Quality Customer Satisfaction

NCM based cathode dominates EV cells

Cell Maker	Chemistry	Capacity
	Anode/Cathode	Ah
AESC	G/LMO-NCA	33
LG Chem	G/NMC-LMO	36
Li-Tec	G/NMC	52
Li Energy Japan	G/LMO-NMC	50
Samsung	G/NMC-LMO	64
Lishen Tianjin	G-LFP	16
Toshiba	LTO-NMC	20
Panasonic	G/NCA	3.1

From LFP to NCM, significant energy density increase can be achieved, which is much needed in xEV application

AABC, 2014

Inspiring works

Remarkable improvement in cell safety for Li[Ni_{0.5}Co_{0.2}Mn_{0.3}]O_2 coated with LiFePO_4

```
W.-S. Kim<sup>a</sup>, S.-B. Kim<sup>a</sup>, I.C. Jang<sup>b</sup>, H.H. Lim<sup>b</sup>, Y.S. Lee<sup>b,*</sup>
```

 $xLi_2MnO_3 \cdot (1 - x)LiMO_2$ blended with LiFePO₄ to achieve high energy density and pulse power capability

Kevin G. Gallagher^{a,*}, Sun-Ho Kang^a, Sei Ung Park^b, Soo Young Han^b

Effect of LiFePO₄ coating on electrochemical performance of LiCoO₂ at high temperature

Hong Wang^{a,*}, Wei-De Zhang^{b,*}, Lun-Yu Zhu^a, Ming-Cai Chen^a

Dual active material composite cathode structures for Li-ion batteries $\stackrel{\text{\tiny{}}}{\overset{\text{\tiny{}}}}$

NCM+LMFP

Coating or mixing with LFP can improve cell safety using layered cathode material

How to improve the safety of NCM cell while still achieving high energy density?

• High energy density

Capacity of blended material of NCM and LMFP was 160mAh/g, 158 mAh/g, 156 mAh/g and 152mAh/g with the concentration ratio of LMFP being 0, 10%, 20% and 40%, respectively.

Packing density remains 3.2g/cm3 even with LMFP being 40% in the blend. Pouch cell (20Ah) using such blend cathode and graphite anode shows high working voltage about 3.7V and energy density over 170wh/kg.

Safety improvement

DSC analysis shows O2 release decreases with the increase of LMFP concentration in the blend, indicating that intermixed NCM/LMFP shows better thermal stability over pure NCM as well as intermixed NCM/LMO.

6.0

5.0

Safety improvement

80 Temp 4.0> Voltage 60 40 2.0 20 1.0 0 0.0 5 45 55 65 15 25 35 Time, min

Cell state:

CC-CV 1C to 4.2V Cut 0.05C at RT

Test condition: Speed 80mm/s. penetrate of cell

mperature: 63°C

Temperature and voltage change during penetration for NCM/LFMP cell

Cell safety was significantly improved after adopting blend active materials

120

100

ç

femperature,

Voltage

NCM/graphite

NCM/LMFP/graphite

Copyright © CALB All Rights Reserved. 2013

Safety improvement

Safety test results for overcharge, overdischarge, short circuit, heating and nail penetration

4.0 > Voltage Time, min

Copyright © CALB All Rights Reserved. 2013

• Cycle life

NMC Blend LMFP RT Cycle performance

comparable to LFP battery

• Rate performance

Battery with blend cathode shows good rate capability even discharged up to 10C

> Introducing CALB

> Application and research on LFP/C batteries

> Development of high energy NCM+LMFP/C batteries

> Summary

Summary

- Long-term cycling、 good rate capability and high thermal stability has made Olivine-structured LFP an ideal positive material for EV and ESS battery.
- Promoted by Chinese battery manufacturers, LFP batteries have been widely adopted in EV、ESS、telecom and many other applications
- NCM+LMFP blend shows high energy density long cycle life good thermal stability and enhanced safety improvement compared to pure NCM or NCM+LMO blend, making it a promising cathode candidate for xEV battery
- CALB is committed to continuous research and improvement of Olivine-phosphate batteries, and will keep expanding its application in a lot of areas.

CALB

Thanks!

Add. No. 66 North Binhe Road, High-Tech Zone, Luoyang, Henan, China 471003 Tel.0379-60697961 Fax.0379-60697975 www.calb.cn