

BECKWITH

ELECTRIC=

CO. INC.

Presenter Contact Info

Wayne Hartmann Senior VP, Customer Excellence Beckwith Electric Company whartmann@beckwithelectric.com 904‐238‐3844

Wayne is the top strategist for delivering innovative technology messages to the Electric Power Industry through technical forums and industry standard development.

- \blacktriangleright Before joining Beckwith Electric, performed in Application, Sales and Marketing Management capacities at PowerSecure, General Electric, Siemens Power T&D and Alstom T&D.
- \triangleright Provides training and mentoring to Beckwith Electric personnel in Sales, Marketing, Creative Technical Solutions and Engineering.
- \blacktriangleright Key contributor to product ideation and holds ^a leadership role in the development of course structure and presentation materials for annual and regional Protection & Control Seminars.
- \blacktriangleright Senior Member of IEEE, serving as ^a Main Committee Member of the Power System Relaying and Control Committee for over 25 years.
	- Chair Emeritus of the IEEE PSRCC Rotating Machinery Subcommittee ('07‐'10).
	- Contributed to numerous IEEE Standards, Guides, Reports, Tutorials and Transactions, delivered Tutorials IEEE Conferences, and authored and presented numerous technical papers at key industry conferences.
- \blacktriangleright Contributed to McGraw‐Hill's "Standard Handbook of Power Plant Engineering."

Transformer Protection WSU Hands-On Relay School 2018

Exploration

- Why transformers fail
- Quick review of protection principles and modern technology differences/advantages
- **► IEEE C37.91, Guide for Power Transformer Protection**
- Discuss non-electrical protections
- \triangleright Discuss electrical protections
	- ٠ Overcurrent based
	- Through fault protection
	- **•** Overexcitation
	- \blacksquare **Differential**
		- •CT performance issue
		- \bullet Transformer protection challenges
		- \bullet Percentage differential characteristic
		- •Restraints for inrush and overexcitation
- \triangleright Realization of settings
- Analysis tools to view relay operation

Transformers: T & D

Transformer Protection

Transformers: T & D

Transformer: GSU Step Up

Transformer Protection

Conservator design 15/20 MVA 72kV-25kV

FAILURE!

Transformer Protection

FAILURE!

FAILURE!

Why Do Transformers Fail?

 The electrical windings and the magnetic core in ^a transformer are subject to ^a number of different forces during operation:

- Expansion and contraction due to thermal cycling
- Vibration
- Local heating due to magnetic flux
- Impact forces due to through-fault current
- Excessive heating due to overloading or inadequate cooling

Costs and Other Factors To Be Considered

- Cost of repairing damage
- Cost of lost production
- ٠ Adverse effects on the balance of the system
- ٠ The spread of damage to adjacent equipment
- The period of unavailability of the damaged equipment

What Fails in Transformers?

- **Windings**
	- Insulation deterioration from:
		- Moisture
		- Overheating
		- Vibration
		- Voltage surges
		- Mechanical Stress from through-faults

LTCs

- - Malfunction of mechanical switching mechanism
- -High resistance contacts
- -**Overheating**
- -Contamination of insulating oil

Transformer Protection

What Fails in Transformers?

\blacksquare **Bushings**

- -General aging
- Contamination
- -**Cracking**
- Internal moisture

Core Problems

- Core insulation failure
- Open ground strap
- Shorted laminations
- -Core overheating

Transformer Protection

Core Construction

- •Shell construction is lighter than core construction
- •3-leg shell core causes zero sequence coupling

Transformer Protection

What Fails in Transformers?

- **Miscellaneous**
	- CT Issues
	- Oil leakage
	- Oil contamination
		- Metal particles **Moisture**

Failure Statistics of Transformers

Failure Statistics of Transformers

Failure Statistics of Transformers: 110kV-149kV

Table B.2-Transformer bank analysis by subcomponents for operating voltages from 110 kV to 149 kV

IEEE 37.91

Failure Statistics of Transformers: 150kV-199kV

Table B.3-Transformer bank analysis by subcomponents for operating voltages from 150 kV to 199 kV

IEEE 37.91

Failure Statistics of Transformers: 200kV-299kV

Table B.4-Transformer bank analysis by subcomponents for operating voltages from 200 kV to 299 kV

IEEE 37.91

Transformer Protection

Analysis of Transformer Failures*

Table 1 - Number and Amounts of Losses by Year

* Total losses in 2000 includes one claim with a business interruption portion of over \$86 million US

Table 1 A	Total # of Losses	Losses w/data	Total MVA reported	Total PD (with size data)	Cost /MVA
1997	19	9	2567	\$20,456,741	\$7969
1998	25	25	5685	\$24,897,114	\$4379
1999	15	13	2433	\$36,415,806	\$14967
2000	20	19	4386	\$56,354,689	\$12849
2001	15	12	2128	\$16,487,058	\$7748
Total	94	78	17,199	\$15,4611,408	

Table 1A - Number and Amounts of Losses by MVA and Year

During this five year period, the average cost is \$8,990 per MVA, or about \$9 per kVA.

*Data taken from "Analysis of Transformer Failures" by William H Bartley, Presented at the International Association of Engineering Insurers 36th Annual Conference – Stockholm, 2003 ²¹²¹

Transformer Protection

ANSI / IEEE C37.91-2008

"Guide for Protective Relay Applications for Power Transformers"

 ⁼ Phase Diff51G ⁼ Ground Overcurrent50/51 ⁼ Phase Overcurrent64G ⁼ Transformer Tank Ground Overcurrent ⁼ Thermal Device ⁼ Thermal Overload ⁼ Overexcitation ⁼ Gas Relay (SPR, Buccholtz)

Class III and IV Transformers $(>= 5MVA)$

From IEEE C37.91, 2008

IEEE Devices used in Transformer Protection

- **24:** Overexcitation (V/Hz)
- **26:** Thermal Device
- **46:** Negative Sequence Overcurrent
- **49:** Thermal Overload
- **50:** Instantaneous Phase Overcurrent
- **50G:** Instantaneous Ground Overcurrent
- **50N:** Instantaneous Residual Overcurrent
- **50BF:** Breaker Failure
- **51G:** Ground Inverse Time Overcurrent
- **51N:** Residual Inverse Time Overcurrent
- **63:** Sudden Pressure Relay (Buccholtz Relay)
- \blacksquare **64G:** Transformer Tank Ground Overcurrent
- **81U:** Underfrequency
- \blacksquare **87H:** Unrestrained Phase Differential
- **87T:** Transformer Phase Differential with Restraints
- \blacksquare **87GD:** Ground Differential (also known as "restricted earth fault")

Transformer Protection Review

- \blacksquare **Internal Short Circuits**
	- Phase Faults
	- Ground Faults

٠ **System Short Circuits (Back Up Protection)**

- Buses and Lines
	- Phase Faults
	- Ground Faults

\blacksquare **Abnormal Conditions**

- Open Circuits
- Overexcitation
- -Abnormal Frequency
- Abnormal Voltage
- Breaker Failure
- Overload
- Geo-magnetically induced current (GIC)

Transformer Protection

Special Subject: GIC

- \Box Occurs in near polar and polar latitudes
- \Box Result of solar storms impacting earth and causing induction and current loops
- \Box Currents are DC and cause saturation of power transformers
-

25

- \Box Proactive protection consists of:
	- \blacksquare Deliberate system compartmentalizing or transformer isolation
	- \blacksquare Use of capacitors on transformer grounds to block DC path

Types of Protection

Mechanical

П **Accumulated Gases**

- Arcing by-products (Buchholz Relay)

\blacksquare **Pressure Relays**

 \blacksquare Arcing causing pressure waves in oil or gas space (Sudden Pressure Relay)

\blacksquare **Thermal**

- - Caused by overload, overexcitation, harmonics and Geo-magnetically induced currents (GIC)
	- Hot spot temperature
	- Top Oil
	- LTC Overheating

Sealing Transformers from Air/Moisture Intrusion

Transformer Protection

- Gas accumulator relay
- Applicable to conservator tanks equipped
- Operates for small faults by accumulating the gas over a period of time
	- Typically used for alarming only
- Operates or for large faults that force the oil through the relay at a high velocity
	- \bullet Used to trip
	- \bullet Able to detect a small volume of gas and accordingly can detect arcs of low energy
- **Detects**
	- •High-resistance joints
	- •High eddy currents between laminations
	- •Low- and high-energy arcing
	- •Accelerated aging caused by overloading

Buchholz Relay

Transformer Protection

Sudden Pressure Relay

- When high current passes through a shorted turn, a great deal of heat is generated
	- Detect large and small faults
- This heat, along with the accompanying arcing, breaks down the oil into combustible gases
- Gas generation increases pressure within the tank
- A sudden increase in gas pressure can be detected by a sudden-pressure relay located either in the gas space or under the oil
- The sudden-pressure can operate before relays sensing electrical quantities, thus limiting damage to the transformer

Transformer Protection

- \Box Drawback of using sudden-pressure relays is tendency to operate on highcurrent through-faults
	- • The sudden high current experienced from a close-in through-fault causes windings of the transformer to move.
	- This movement causes a pressure wave that is transmitted through the oil
- Countermeasures:
	- Overcurrent relay supervision
		- Any high-current condition detected by the instantaneous overcurrent relay blocks the sudden-pressure relay

Sudden Pressure Relay

- This method limits the sudden-pressure relay to low-current incipient fault detection.
- Place sudden-pressure relays on opposite corners of the transformer tank.
	- Any pressure wave due to through-faults will not be detected by both sudden-pressure relays.
	- The contacts of the sudden-pressure relay are connected in series so both must operate before tripping.

Sudden Pressure Relay Supervision Scheme

- \blacksquare Phase and Ground Overcurrent supervises SPR (63)
- \blacksquare SPR (63) employs
	- •Pickup delay for overcurrent supervision
	- \bullet Drop out delay to allow SPR (63) to reset

Causes of Transformer Overheating

 \Box Transformers may overheat due to the following reasons:

- High ambient temperatures
- **Failure of cooling system**
- External fault not cleared promptly
- **Overload**
- Abnormal system conditions such as low frequency, high voltage, nonsinusoidal load current, or phase-voltage unbalance

Transformer Overheating

Undesirable results of overheating

- Overheating shortens the life of the transformer insulation in proportion to the duration of the high temperature and in proportion to the degree of the high temperature.
- **Severe over temperature may result in an immediate** insulation failure (fault)
- Overheating can generate gases that could result in an electrical failure (fault) Severe over temperature may result in the transformer coolant heated above its flash temperature, with a resultant fire (fault and a bang!).

Heating and Relative Transformer Temperatures

- \blacksquare Temperature may be monitored multiple places
	- \bullet Hot Spot
	- •Top Oil
	- •Bottom Oil
	- •LTC Tank
	- Delta of the above
- \blacksquare The "hot spot" is, as then name indicates, the hottest spot
- \blacksquare Other temperatures are lower

Standard Handbook for Electrical Engineers

Transformer Temperature Monitoring

Transformer Sensing Inputs (Typical)

Transformer Protection

Hot Spot Detection

- Fiberoptic sensors
	- Use Gallium Arsenic (GaAs) based spectrophotometric module
	- Measures the spectrum a temperature-dependent GaAs crystal affixed on optical fiber
- Typical on newly constructed transformers
- Difficult to retrofit
- More exact that IEEE calculation approximations
	- "Aging Factor" = multiples of 1 hour of normal temperature use

"Transformer Winding Hot Spot Temperature Determination," 2006, Qualitrol

Transformer Electrical Protection Issues

In and Out of Zone

Complex Applications

Complex Applications

Transformer Protection

2 Winding

Transformer Protection

3 Winding

Transformer Protection

4 Winding

Transformer Protection

4 Winding w/Current Summing

4343

Desirable Sensing Possibilities

- Many ground Inputs available for 87GD (REF), 51G
- п Many voltage inputs available for 24, 59, 59N, 27, 81-0, 81-U
- \blacksquare Current Summing available on two sets of current inputs
	- $\circ~$ Useful for thru-fault on dual high side CB applications

Types of Protection

Electrical

- \blacksquare **Fuses**
	- -Small transformers (typ. <10 MVA)
	- -Short circuit protection only
- \blacksquare **Overcurrent protection**
	- - High side
		- Through fault protection
		- Differential back-up protection for high side faults
	- Low side
		- System back up protection
		- Unbalanced load protection

Transformer Protection Functions

Internal Faults:

- \blacksquare **87T**Phase Differential with Restraints
- \blacksquare **87H** Unrestrained Phase Differential
- **87GD**Three Ground Differential elements (Restricted Earth Fault)
- **64G**Tank Ground Overcurrent

Through Faults:

- \blacksquare **50/51** Phase Overcurrent
- **50G/51G** Ground Overcurrent
- **50N/51N** Instantaneous Residual Overcurrent
- \blacksquare **46**Negative Sequence Overcurrent

Transformer Protection Functions

Abnormal Operating Conditions:

- **27**Undervoltage
- **24 Overexcitation (V/Hz)**
- \blacksquare **49** Thermal Overload
- **81U** Underfrequency
- **50BF** Breaker Failure

Asset Management Functions:

- **TF** Through Fault Monitoring ■ **BM**Breaker Monitoring
- \blacksquare **TCM**Trip Circuit Monitoring

High Side Overcurrent

- Back up to differential, sudden pressure
- Coordinated with line protection off the bus
	- Do not want to trip for low-side external faults

High Side Overcurrent for Internal Fault

- Set to pick up at a value higher than the maximum asymmetrical through-fault current.
	- This is usually the fault current through the transformer for a lowside three-phase short circuit.
- \blacksquare Instantaneous units that are subject to transient overreach are set for pickup in the range of 125% to 200

51 Function Settings

50 Function Settings

Low Side Overcurrent

- Provides protection against uncleared faults downstream of the transformer
- May consist of phase and ground elements
- Coordinated with downline protection off the bus

- \blacksquare Negative sequence overcurrent provides protection against
	- Unbalanced loads
	- **Open conductors**
	- Phase-to-phase faults
	- Ground faults
		- Does not protect against 3-phase faults

46

Negative Sequence Overcurrent

- \blacksquare Can be connected in the primary supply to protect for secondary phase-to-ground or phase-to-phase faults
- \blacksquare Helpful on delta-wye grounded transformers where only 58% of the secondary p.u. phase-to-ground fault current appears in any one primary phase conductor

Negative Sequence Overcurrent

 \blacksquare Negative sequence relays can be set below load current levels and be more sensitively than phase overcurrent relays for phase-to-phase fault detection

 In many applications, phase overcurrent relay pickup settings can be higher allowing more feeder load capability.

46 Function Settings

Through Fault

- Provides protection against cumulative through fault damage
- Typically alarm function

Through Fault

- \blacksquare A transformer is like a motor that does not spin
- \blacksquare There are still forces acting in it
- \blacksquare That is why we care about limiting through-faults

Through Fault Monitoring

- \blacksquare Protection against heavy prolonged through faults
- \blacksquare Transformer Category

-IEEE Std. C57.109-1985 Curves

Through Fault Damage Mechanisms

- \blacksquare Thermal Limits for prolonged through faults typically 1-5X rated
	- \blacksquare Time limit of many seconds
- \blacksquare Mechanical Limits for shorter duration through faults typically greater than 5X rated
	- Time limit of few seconds
- NOTE: Occurrence limits on each Transformer Class Graph

Standard Handbook for Electrical Engineers

Through Fault Category 1 (15 kVA – 500 kVA)

Through Fault Category 2 (501 kVA – 5 MVA)

Through Fault damage increases for a given amount of transformer $Z\%$, as more I ($I²$) through the Z results in higher energy (forces)

From IEEE C37.91

From IEEE C37.91

Through Fault Category 3 5.001 MVA – 30 MVA

Through Fault damage increases for a given amount of transformer $Z\%$, as more I ($I²$) through the Z results in higher energy (forces)

Through Fault Category 4 (>30 MVA)

Through Fault damage increases for a given amount of transformer $Z\%$, as more I ($I²$) through the Z results in higher energy (forces)

TIMES NORMAL BASE CURRENT

4 Winding w/Current Summing &

Through Fault Function Settings (TF)

- \blacksquare Should have a current threshold to discriminate between mechanical and thermal damage areas
	- • May ignore through faults in the thermal damage zone that fails to meet recording criteria
- \blacksquare Should have a minimum through fault event time delay to ignore short transient through faults
- \blacksquare Should have a through fault operations counter
	- •Any through fault that meets recording criteria increments counter
- \blacksquare Should have a preset for application on existing assets with through fault history
- \blacksquare Should have cumulative 1²t setting
	- \bullet How total damage is tracked
- \blacksquare Should use *inrush restraint* to not record inrush periods
	- \bullet Inrush does not place the mechanical forces to the transformer as does a through fault

Through Fault Function Settings (TF)

69

Overexcitation

- Responds to overfluxing; excessive V/Hz
	- 120V/60Hz = 2 = 1pu
- Constant operational limits oANSI C37.106 & C57.12
	- 1.05 loaded, 1.10 unloaded

- o Inverse time curves typically available for values over the constant allowable level
- **Overfluxing is ^a voltage and frequency based issue**
- **Overfluxing protection needs to be voltage and frequency based (V/Hz)**
- **Although 5th harmonic is generated during an overfluxing event, there is no correlation between levels of 5th harmonic and severity of overfluxing**
- **Apparatus (transformers and generators) is rated with V/Hz withstand curves and limits –** *not* **5th harmonic withstand limits**

Overexcitation vs. Overvoltage

- Overvoltage protection reacts to dielectric limits.
	- Exceed those limits and risk punching a hole in the insulation
	- Time is not negotiable
- **Overexcitation protection reacts to overfluxing**
	- Overfluxing causes heating
	- The voltage excursion may be less than the prohibited dielectric limits (overvoltage limit)
	- Time is not negotiable
	- The excess current cause excess heating which will cumulatively damage the asset, and if left long enough, will cause a catastrophic failure 71

Causes of Overexcitation

\blacksquare **Generating Plants**

- o Excitation system runaway
- o Sudden loss of load
- o Operational issues (reduced frequency)
	- Static starts
	- Pumped hydro starting
	- ٠ Rotor warming

Transmission Systems

- o Voltage and Reactive Support Control Failures
	- Capacitor banks ON when they should be OFF
	- Shunt reactors OFF when they should be ON
	- Near-end breaker failures resulting in voltage rise on line
		- Ferranti Effect
	- Runaway LTCs
	- Load Loss on Long Lines (Capacitive Charging Voltage Rise)

Caps ON When They Should Be Off

Reactors OFF When They Should Be On

Small Load Trasport (Load Rejection at Remote Area)

1996 WECC Load Rejection Event

WSU Hands-On Relay School 2018

Transformer Protection

Overexcitation Event

Overexcitation Curves

This is typically how the apparatus manufacturer specifies the V/Hz curves

Overexcitation Curves

This is typically how the apparatus manufacturer specifies the V/Hz curves

Overexcitation Relay Curves

This is how protection engineers enter the v/Hz curve into a protective device

Overexcitation (24)

Types of Protection: Differential

Advantages

- **Provides high speed detection of faults that can reduce** damage due to the flow of fault currents
- **Offers high speed isolation of the faulted transformer,** preserving stability and decreasing momentary sag duration
- No need to coordinate with other protections
- **The location of the fault is determined more precisely**
	- Within the zone of differential protection as demarked by CT location

Types of Protection: Phase Differential

- Applied with variable percentage slopes to accommodate CT saturation and CT ratio errors
- -Applied with inrush and overexcitation restraints
- - Pickup/slope setting should consider: magnetizing current, turns ratio errors due to fixed taps and +/- 10% variation due to LTC
- - May not be sensitive enough for all faults (low level, ground faults near neutral)

Phase Differential: Basic Differential Relay

Basic Differential Relay - External Fault

Basic Differential Relay - Internal Fault

Differential Protection

- \blacksquare What goes into a "unit" comes out of a "unit"
- \blacksquare Kirchoff's Law: The sum of the currents entering and leaving a junction is zero
- \blacksquare Straight forward concept, but not that simple in practice with transformers
- A host of issues challenges security and reliability of transformer differential protection

Typical Phase Differential Characteristic

Unique Issues Applying to Transformer Differential Protection

- \blacksquare **CT** ratio caused current mismatch
- **Transformation ratio** caused current mismatch (fixed taps)
- \blacksquare **LTC induced current mismatch**
- \blacksquare **Delta-wye transformation** of currents
	- Vector group and current derivation issues
- \blacksquare **Zero-sequence current elimination** for external ground faults on wye windings
- \blacksquare **Inrush phenomena** and its resultant current mismatch

Unique Issues Applying to Transformer Differential Protection

- \blacksquare **Harmonic content available during inrush** period due to point-on-wave switching
	- Especially with newer transformers with step-lap core construction
- \blacksquare **Overexcitation phenomena** and its resultant current mismatch
- \blacksquare **Internal ground fault sensitivity** concerns
- \blacksquare **Switch onto fault** concerns
- \blacksquare **CT saturation, remanance and tolerance**

WSU Hands-On Relay School 2018

Application Considerations: Paralleling Sources

- When paralleling sources for differential protection, beware!
- ٠ Paralleled sources (not load, specifically sources) have different saturation characteristics and present the differential element input with corrupt values
- ٠ Consider through-fault on bus section
	- •One CT saturates, the other does not
	- • Result: Input is presented with "false difference" due to combining of CTs from different sources outside of relay

WSU Hands-On Relay School 2018

Differential Element Security Challenge

 \blacksquare The problem with external faults is the possibility of CT saturation making an external fault "look" internal to the differential relay element

CT Performance: 200:5, C200, R=0.5, Offset = 0.5, 1000A

Thick lines: Ideal (blue) and actual (black) secondary current in amps vs time in seconds. Thin lines: Ideal (blue) and actual (black) secondary current extracted fundamental rms value, using a simple DFT with a one-cycle window.

CT Performance: 200:5, C200, R=0.5, Offset = 0.5, 2000A

Thick lines: Ideal (blue) and actual (black) secondary current in amps vs time in seconds. Thin lines: Ideal (blue) and actual (black) secondary current extracted fundamental rms value, using a simple DFT with a one-cycle window.

CT Performance: 200:5, C200, R=0.5, Offset = 0.75, 2000A

Thick lines: Ideal (blue) and actual (black) secondary current in amps vs time in seconds. Thin lines: Ideal (blue) and actual (black) secondary current extracted fundamental rms value, using a simple DFT with a one-cycle window.

CT Performance: 200:5, C200, R=0.75, Offset = 0.75, 2000A

Thick lines: Ideal (blue) and actual (black) secondary current in amps vs time in seconds. Thin lines: Ideal (blue) and actual (black) secondary current extracted fundamental rms value, using a simple DFT with a one-cycle window.

CT Performance: 400:5, C400, R=0.5, Offset = 0.5, 2000A

Thick lines: Ideal (blue) and actual (black) secondary current in amps vs time in seconds. Thin lines: Ideal (blue) and actual (black) secondary current extracted fundamental rms value, using a simple DFT with a one-cycle window.

CT Performance: 400:5, C400, R=0.5, Offset = 0.5, 4000A

Thick lines: Ideal (blue) and actual (black) secondary current in amps vs time in seconds.

Thin lines: Ideal (blue) and actual (black) secondary current extracted fundamental rms value, using a simple DFT with a one-cycle window.

CT Performance: 400:5, C400, R=0.5, Offset = 0.5, 8000A

Thick lines: Ideal (blue) and actual (black) secondary current in amps vs time in seconds. Thin lines: Ideal (blue) and actual (black) secondary current extracted fundamental rms value, using a simple DFT with a one-cycle window.

CT Performance: 400:5, C400, R=0.5, Offset = 0.75, 8000A

Thick lines: Ideal (blue) and actual (black) secondary current in amps vs time in seconds. Thin lines: Ideal (blue) and actual (black) secondary current extracted fundamental rms value, using a simple DFT with a one-cycle window.

To determine the effect of saturation on a particular digital relay, one must have "models" for the blocks shown below:

CT Performance: 400:5, C400, R=0.75, Offset = 0.75, 8000A

Thick lines: Ideal (blue) and actual (black) secondary current in amps vs time in seconds. Thin lines: Ideal (blue) and actual (black) secondary current extracted fundamental rms value, using a simple DFT with a one-cycle window.

advanced as a consideration of the first series and consideration through the first data determines where and a series of the set of the

Through Current: Perfect Replication

Through Current: Imperfect Replication

Internal Fault: Perfect Replication

Internal Fault: Imperfect Replication

WSU Hands-On Relay School 2018

Application Considerations: Paralleling Sources

- When paralleling sources for differential protection, beware!
- ٠ Paralleled sources (not load, specifically sources) have different saturation characteristics and present the differential element input with corrupt values
- ٠ Consider through-fault on bus section
	- •One CT saturates, the other does not
	- • Result: Input is presented with "false difference" due to combining of CTs from different sources outside of relay

Classical Differential Compensation

- **CT ratios must be selected to account for:**
	- Transformer ratios
	- -If delta or wye connected CTs are applied
	- -Delta increases ratio by 1.73
- \blacksquare **Delta CTs must be used to filter zero-sequence current on wye transformer windings**
Classical Differential Compensation

"Dab" as polarity of "A" connected to non-polarity of "B"

Bushing Nomenclature

- \blacksquare H1, H2, H3
	- \blacksquare Primary Bushings
- X1, X2, X3
	- \blacksquare Secondary Bushings

Wye-Wye H1 and X1 at zero degrees Delta-Delta H1 and X1 at zero degrees Delta-Wye H1 lead X1 by 30 degrees Wye-Delta H1 lead X1 by 30 degrees

Angular Displacement

- \blacksquare $\hspace{0.1cm}$ - ANSI Y-Y & Δ - Δ @ 0°
- \blacksquare ■ ANSI Y-∆ & ∆-Y @ H1 lead X1 by 30° *or* X1 lag H1 by 30°

Winding Types and Impacts

- Wye-Wye
	- ٠ Cheaper than 2 winding if autobank
	- Conduct zero-sequence between circuits
	- **Provides ground source for secondary circuit**
- Delta-Delta
	- Blocks zero-sequence between circuits
	- ٠ Does not provide a ground source
- Delta-Wye
	- ٠ Blocks zero-sequence between circuits
	- ٠ Provides ground source for secondary circuit
- Wye-Delta
	- ٠ Blocks zero-sequence between circuits
	- Does not provide a ground source for secondary circuit

Winding Types

Wye-Wye

Winding Types

\Box Delta-Delta

Transformer Protection

Winding Types

□Delta-Wye

Winding Types

Wye-Delta

Compensation in Digital Relays

- **Transformer ratio**
- CT ratio
- ٠ **• Phase angle shift and** $\sqrt{3}$ **factor due to delta/wye** connection
- Zero-sequence current filtering for wye windings so the differential quantities do not occur from external ground faults

Phase Angle Compensation in Numerical Relays

- Phase angle shift due to transformer connection in electromechanical and static relays is accomplished using appropriate connection of the CTs
- The phase angle shift in Numerical Relays can be compensated in software for any transformer with zero or 30° increments
- All CTs may be connected in WYE which allows the same CTs to be used for both metering and backup overcurrent functions
- Some numerical relays will allow for delta CTs to accommodate legacy upgrade applications

Transformer Protection

- Delta High Side, Wye Low Side
- High Lead Low by 30°
- Delta-Wye
- Delta (ab)
- Dy1
	- \blacksquare Dyn1
	- \blacksquare Wye High Side, Delta Low Side
	- \blacksquare High Lead Low by 30°
	- \blacksquare Wye-Delta
- \blacksquare Delta (ac)
- \blacksquare Yd1
	- YNd1

Transformer Protection

- Delta High Side, Wye Low Side
- High Lead Low by 30°
- Delta-Wye
- Delta (ab)
- Dy1
	- \blacksquare Dyn1
	- \blacksquare Wye High Side, Delta Low Side
	- \blacksquare High Lead Low by 30°
	- \blacksquare Wye-Delta
- \blacksquare Delta (ac)
- \blacksquare Yd1
	- YNd1

Transformer Protection

Transformer ConnectionBushing Nomenclature Y-Y ANSI $\Delta\text{-}\Delta$ ANSI $\mathsf{Y}\text{-}\Delta$ ANSI Δ -Y ANSI

- \blacksquare ANSI follows "zero phase shift", or "high lead low by 30°"
- \blacksquare IEC designations use "low lags high by increments of 30° phase shift
- \blacksquare IEC uses various phase shifts in 30 increments
	- \blacksquare 30, 60, 90, 180, etc.

Digital Relay Application

All WYE CTs shown

Benefits of Wye CTs

- \blacksquare Phase segregated line currents
	- -Individual line current oscillography
	- -Currents may be easily used for overcurrent protection and metering
	- -Easier to commission and troubleshoot
	- -Zero sequence elimination performed by calculation

NOTE:

- For protection upgrade applications where one wants to keep the existing wiring, the relay must:
	- Accept either delta or wye CTs
	- For delta CTs, recalculate the phase currents for overcurrent functions

Application Adaptation

- **Challenge:** To be able to handle ANY combination of transformer winding arrangements *and* CT connection arrangements
- \blacksquare **Strategy:** Use a menu that contains EVERY possible combination
	- -Set W1's transformer winding configuration and CT configuration
	- -Set W2's transformer winding configuration and CT configuration
	- -Set W3's transformer winding configuration and CT configuration
	- -Set W4's transformer winding configuration and CT configuration
	- Standard or Custom Selection
		- Standard handles most arrangements, including all ANSI standard type
		- Custom allows any possible connections to be accommodated (Non-ANSI and legacy delta CTs)
	- -Relay selects the proper currents to use, directly or through vector subtraction
	- -Relay applies $\sqrt{3}$ factor if required
	- -Relay applies zero sequence filtering if required

Compensation: Base Model

Compensation: Change in CT Ratio

Compensation: Transformer Ratio

Compensation: Delta – Wye Transformation

Compensation: Zero-Sequence Elimination

$$
3I_0 = [I_a + I_b + I_c]
$$

$$
I_0 = 1/3 * [I_a + I_b + I_c]
$$

Used where filtering is required (Ex: Y/Y transformer).

Standard Application

- Set winding types
- 6 choices of configuration for windings and CTs

Custom Application: Accommodates any CTs and Windings

Custom Application: Accommodates any CTs and Windings

Core Construction and 3I₀ Current

Unit transformer with Three-Legged Core

■ With a 3 legged core, the zero-sequence current contribution of the transformer case may contribute as much as 20% to 25% zero-sequence current.

 \circ This is true regardless of if there is delta winding involved \circ Use 3I $_0$ restraint on wye CTs even on the delta CT winding!!! \circ Use 3I $_0$ restraint on wye CTs with wye windings!!!

Custom Application: Accommodates any CTs

- Legacy Application
- Need to keep Delta CTs on WYE side of transformer

Custom Application: Accommodates any CTs

- \triangleright Legacy Application
- \triangleright Need to keep Delta CTs on WYE side of transformer

Relay Custom Application

Winding Types

Zig-Zag

■ Provides Ground Source for Ungrounded systems

Winding Types

Wye-Delta Ground Bank

■ Provides Ground Source for Ungrounded **Systems**

Inrush Detection and Restraint

- \blacksquare Characterized by current into one winding of transformer, and not out of the other winding(s)
	- This causes a differential element to pickup
- \blacksquare Use **inrush restraint** to block differential element during inrush period
	- **Initial inrush** occurs during transformer energizing as the core magnetizes
	- **Sympathy inrush** occurs from adjacent transformer(s) energizing, fault removal, allowing the transformer to undergo a low level inrush
	- **Recovery Inrush** occurs after an out-of-zone fault is cleared and the fault induced depressed voltage suddenly rises to rated.

Classical Inrush Detection

- 2nd harmonic restraint has been employed for years
- "Gap" detection has also been employed
- As transformers are designed to closer tolerances, the incidence of both 2nd harmonic and low current gaps in waveform have decreased
- If 2nd harmonic restraint level is set too low, differential element may be blocked for internal faults with CT saturation (with associated harmonics generated)

Advanced Inrush Detection

- 4th harmonic is also generated during inrush
	- Even harmonics are more prevalent than odd harmonics during inrush
	- Odd harmonics are more prevalent during CT saturation
- Use 4th harmonic and 2nd harmonic together
	- Use RMS sum of the 2 $^{\mathsf{nd}}$ and 4 $^{\mathsf{th}}$ harmonic as inrush i restraint
- Result: Improved security while not sacrificing reliability

Inrush Oscillograph

Typical Transformer Inrush Waveform

Inrush Oscillograph

Typical Transformer Inrush Waveform

Point-on-Wave Considerations During Switch On

- As most circuit breakers are ganged three-pole, one phase will be near voltage zero at the moment of transformer energization
- When a phase of a transformer is switched on near zero voltage, the inrush is increased and so is the resultant harmonics
- Low levels of harmonics (especially modern transformers) may not provide inrush restraint for affected phase – security risk!
- ٠ Employ cross-phase averaging to compensate for this issue
Cross Phase Averaging

- \blacksquare Provides security if ^a phase(s) has low harmonic content during inrush
- \blacksquare Cross phase averaging uses the sum of harmonics on all three phases as the restraint value

$$
\text{Id}_{\text{CPA}}24 = \sqrt{\text{IAd}_{24}^2 + \text{IBd}_{24}^2 + \text{ICd}_{24}^2}
$$

- \blacksquare Cross Phase Averaging (harmonic sharing) is a modification of the harmonic blocking technique
- \blacksquare The harmonic content of all three phases is summed before checking the ratio of the fundamental to harmonic
- \blacksquare This approach adds security in applications in which harmonic content on one or two phases is not sufficient to block the operation of the relay

Overexcitation Restraint

- \blacksquare Overexcitation occurs when volts per hertz level rises (V/Hz) above the rated value
- \blacksquare This may occur from:
	- Load rejection (generator transformers)
	- Malfunctioning of voltage and reactive support elements
	- - Malfunctioning of breakers and line protection (including transfer trip communication equipment schemes)
	- Malfunctioning of generator AVRs
- \blacksquare The voltage rise at nominal frequency causes the V/Hz to rise
- \blacksquare This causes the transformer core to saturate and thereby increase the magnetizing current.
- \blacksquare The increased magnetizing current contains 5th harmonic component
- \blacksquare This magnetizing current causes the differential element to pickup
	- Current into transformer that does not come out

Overexcitation Restraint

- \blacksquare Use 5th harmonic level to detect overexcitation
- \blacksquare Most relays block the differential element from functioning during transformer overexcitation
	- If the transformer internally faults (1 or 2 Phase), the unfaulted phases(s) remain overexcited blocking the differential element
	- Faulting during overexcitation is more likely if the voltage is greater than rated, as it will cause increased dielectric stress
- \blacksquare An improved strategy is to raise the pick up level of the differential element to accommodate the increased difference currents caused by the transformer saturation
	- This allows the differential element to rapidly trip if an internal fault occurs during the overexcitation period
- \blacksquare Result: Improved reliability while not sacrificing security

Trip Characteristic – 87T

Switch-onto-Fault

- \blacksquare Transformer is faulted on energizing
- \blacksquare Harmonic restraint on unfaulted phases may work against trip decision if cross phase averaging is used
	- This may delay tripping until the inrush current is reduced
- \blacksquare 87H and 87GD can be used to provide high speed protection for this condition
	- If fault is close to bushings current may be greater than 6-8pu
	- \blacksquare High set element 87H can provide high speed protection for severe faults as this function is not restrained by harmonics
	- 87H is set above the worst case inrush current
	- 87GD function can provide fast protection during switching onto ground faults as this element is not restrained using harmonics

Phase Differential

- 87T element is typically set with 30-40% pickup
	- •This is to accommodate:
	- Class "C" CT accuracy (+/- 10%, x20 nominal current)
	- Effects of LTCs (+/- 10%)
- 87HS set to 9-12x rated current
	- Inrush does not exceed 6-8x rated current
- That leaves a portion of the winding not covered for a ground fault (near the neutral)
- Employ ^a ground differential element to improve sensitivity (87GD)

WSU Hands-On Relay School 2018 **Transformer Protection**

Phase Differential (87)

Phase Differential (87)

■ Setting "tap" is a method used to nominalize the winding currents with respect to MVA, kV and CT ratio

Phase Differential (87)

Types of Protection: Ground Differential (87GD; REF)

- **Sensitive detection of ground faults, including those** near the neutral
- Does not require inrush or overexcitation restraint
- **EXTE:** Low impedance grounded systems use directional signal for added stability
- Low impedance grounded systems do not require dedicated CTs
	- Same set of CTs can be used for phase differential, phase overcurrent, ground differential and ground overcurrent protection

Types of Protection: Ground Differential (87GD; REF)

Improved Ground Fault Sensitivity

- \blacksquare Use 87GD
- $I_A + I_B + I_C = 3I_0$
- \blacksquare If fault is internal, opposite polarity
- \blacksquare If fault is external, same polarity

87GD with Internal Fault, Double Fed

87GD with External Through Fault

Improved Ground Fault Sensitivity (87GD)

- \blacksquare Direction calculation used with currents over 140mA on both sets of CTs (3 $_{\sf I0}$ and I $_{\sf G}$)
- Directional element used to improve security for heavy external phase to phase faults that cause saturation
- When current >140mA, element uses current setting *and* directional signal
- When current <= 140mA, element uses current setting only
	- •Saturation will not occur at such low current levels
	- \bullet Directional signal not required for security
	- • Allows element to function for internal faults without phase output current (open low side breaker, transformer energized)

87GD with Internal Fault, Single Feed

 $\textsf{I}_\textsf{G} >$ setting -3I $_{\rm o}$ x I $_{\rm G}$ cos (180) = 3I $_{\rm o}$ I $_{\rm G}$

87GD Function

May be used with Current Summing

Ground Fault Protection for Delta-Wye Transformer

NOTE:

1. Zero sequence current arrows are for an external ground fault for which the ground relays will not operate.

2. If phase ct ratio equals ground ct ratio, auxiliary transformer is not required.

3. Select auxiliary ct ratio to give positive non-trip bias to 67G relay for an external fault.

4. System must supply zero sequence current for this scheme to work

49 Thermal Overcurrent

- The Transformer Overload function (49) provides protection against possible damage during overload conditions
- **IEC-255-8 standard (presently under revision), provides** both cold and hot curves
- The function uses the thermal time constant of the transformer and the maximum allowable continuousoverload current (I_{max}) in implementing the inverse time characteristic

49 Thermal Overcurrent

The operating time is defined according to the standard IEC 60255-8:

$$
t=\tau \times I_n \ \left(\frac{{I_L}^2 - \ I_{PL}^2}{I_L{}^2 - \ I_{max}{}^2}\ \right)
$$

49 Thermal Overcurrent

49: Winding Thermal Protection

Phasor Displays

A very useful commissioning tool for viewing selected vectors

Differential

- Displays uncompensated currents
	- -You can see the phase shift and relative magnitudes
- Displays compensated currents
	- - If they are equal in magnitude, and W2 and W3 are 180 degrees out from W1, the field wiring and relay settings are in agreement
- All Currents and Voltages
	- $\textcolor{red}{\bullet}$ Displays all values

Transformer Protection

Phasor Diagram

Transformer Protection

Phasor Diagram

Transformer Protection

Phasor Display (Vectors)

Oscillography Uses

- **Speed transformer's return to service if event is not an** internal fault
	- Identify type of testing needed
	- In the transformer or system?
	- Provide data to transformer manufacturer if asset health is in question
- Determine if relay and circuit breaker operated properly
	- Identify relay, control or breaker problem
- \blacksquare . Uncovers unexpected problems
	- **E** Settings
- Comtrade Oscillographs (*.cfg)

 $\vert \textbf{v} \vert$

Cancel

Files of type:

Osc Files (*.osc, *.cfg, *.flt)

Opening an IPSplot PLUS File View Help **Oscillographic File** $Ctrl + O$ Open... **(*.cfg or *.ocs)** Print Setup... 1 UNIT 1 GEN PROT.OSC 2 AE 13 - June 28,2011 trip.OSC 3 C:\Users\...\tst1.osc $\Sigma\!$ Open File - Security Warning Exit The publisher could not be verified. Are you sure you want to run this software? Name: C:\Users\whartmann\Desktop\IPSPlot.exe Publisher: Unknown Publisher Type: Application From: C:\Users\whartmann\Desktop\IPSPIot.exe \mathbf{x} Open Run Cancel Look in: Sample Oscillos_frST $\vert \cdot \vert$ ←自合图▼ \mathbf{x} V Always ask before opening this file 鬼 Name Dat AE 13 - June 28,2011 trip.OSC 6/30/201 Recent Places JCB2 3311 87HT_AUG5TH.OSC 8/9/2012 This file does not have a valid digital signature that verifies its Rec1.osc 9/21/201 publisher. You should only run software from publishers you trust. UNIT 1 GEN PROT.OSC $2/2/2012$ Desktop How can I decide what software to run? ra de la contrata de
Del contrata de la c Type: OSC File لوكيا Size: 76.5 KB Libraries Date modified: 2/2/2012 6:59 PM N Computer C Network \leftarrow UNIT 1 GEN PROT ⊐ Open File name:

Transformer Protection

Waveform Capture

178 178

Test and Commissioning

Commissioning Tasks

- PAT
	- Panel Acceptance Test
	- Test from the panel terminal blocks to the relay
		- Includes test switches
- SAT
	- –Site Acceptance Test
	- – Take successful PAT panel, and test with:
		- Secondary injection from CT termination cabinet at transformer/switchyard
		- Load pick up on transformer

Commissioning Tools

- Advanced Metering
	- Sequence components for all windings
		- Positive, negative and zero
- Restraint and differential currents
- Vector Metering
	- Uncompensated
		- Raw signal
	- –**Compensated**
		- Post vector and ratio corrections
- Digital Oscillography
	- All winding currents

Commissioning Examples

- •Y-Y-Y, yyy, normal load flow
- •Y-Y-Y, yyy, rolled A-phase on W2
- •• \triangle -Y-Y, yyy, normal load flow
- •• \triangle -Y-Y, yyy, rolled A-phase on W1
- • \bullet \triangle -Y-Y, yyy, rolled C-phase on W1

Details

- Used test equipment to simulate 3 winding transformers of various winding and CT configurations
- Injected 3A into W1, injected 1.5A into W2 and W3 to simulate load flow
- Assumed 1:1 transformer and 1:1 CTs for easy viewing of principles
- Created correct "base case"
- Created incorrect case
- Used advanced protection system tools to "diagnose" the incorrect issue

Y:Y:Y, yyy, 1:1 Ratio, 1:1 CTs, Normal

Three Line: Y:Y:Y, 1:1 Ratio, 1:1 CTs, Normal

Advanced Metering: Y:Y:Y, 1:1 Ratio, 1:1 CTs, Normal

Low levels of negative and zero sequence current High level of positive sequence current $\frac{18 \times}{8}$ (1) BECKWITH ELECTRIC CO. $M-3311$ $A:1$ $M-3311$ **VOLTAGE** 114.9 Phase A **CURRENTS** 3.001 2.999 2.998 2.997 0.000 0.000 Winding 1: Phase B Phase A Phase C Pos. Seq. Neg. Seq. Zero Seq. 1.498 **0.0**1.497 0.000 0.000 1.496 1494 Winding 2 Pos. Seq. Neg. Seq. Phase A Phase B Phase C Ground Zero Seq. 1.498 1.494 1.496 **0.0**1.498 0.000 0.002 Winding 3 Phase A Phase B Phase C Ground Pos. Seq. Neg. Seq. Zero Seq. **FREQUENCY** V/Hz 60.00 95.6 $\%$ $\rm Hz$ **OUTPUTS INPUTS BREAKER** $\begin{array}{ccc} \circ & \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ & \circ \\ \circ & \circ & \circ & \circ & \circ \end{array}$ \bullet \mathcal{O}_{6} \bigcirc O O $\begin{smallmatrix}0&0\\2&1\end{smallmatrix}$ \bigcirc \bigcirc \circledcirc **CLOSED** $8 \t7$ $\overline{2}$ $\mathbf{1}$ $5⁵$ $4¹$ $3¹$ OMICRON QuickCMC - [T... 5004 B 2:07 PM

Advanced Metering: Y:Y:Y, 1:1 Ratio, 1:1 CTs, Normal

Vector Metering: Y:Y:Y, 1:1 Ratio, 1:1 CTs, Normal

Digital Oscillography: Y:Y:Y, 1:1 Ratio, 1:1 CTs, Normal

Y:Y:Y, yyy, 1:1 Ratio, 1:1 CTs, Roll W2, ØA

Three Line: Y:Y:Y, 1:1 Ratio, 1:1 CTs, Roll ØA, W2

Advanced Metering: Y:Y:Y, 1:1 Ratio, 1:1 CTs, Roll ØA, W2

Advanced Metering: Y:Y:Y, 1:1 Ratio, 1:1 CTs, Roll ØA, W2

Vector Metering: Y:Y:Y, 1:1 Ratio, 1:1 CTs, Roll ØA, W2

W1, Phase A at 0 degrees W2, Phase A at 0 degrees (180) W3, Phase A at 180 degrees

Digital Oscillography: Y:Y:Y, 1:1 Ratio, 1:1 CTs, Roll ØA, W2

Δ: Υ: Υ, ууу, 1:1 Ratio, 1:1 CTs, Normal

Three Line: A:Y:Y, 1:1 Ratio, 1:1 CTs, Normal

Advanced Metering: :Y:Y, 1:1 Ratio, 1:1 CTs, Normal

Advanced Metering: A:Y:Y, 1:1 Ratio, 1:1 CTs, Normal

Very low differential current Very high restraint current EXPSCOM
A File dary Status II] $\overline{\mathbf{H}}$ Relay Window Hel $L2X$ (1) BEC WITH ELECTRIC CO. $M-3311$ M-3311 A:1 **Fundamental Frequency Currents (p.u.)** 0.997 0.996 Restraint: Phase A Phase B \Box Phase C 0.005 0.007 0.003 0.99 0.98 Differential: Phase A Phase B Phase C Ground(W2) Ground(W3) **Harmonic Currents** 0.002 0.004 0.000 Second: Phase A Phase B Phase C 0.003 0.002 0.001 Fourth: Phase A Phase B Phase C 0.004 0.005 0.000 Fifth: Phase A Phase B Phase C **Breaker Monitor Accumulators** 199 (Amp Cycles) 19 Winding 1: Phase A Phase B Phase C (Amp Cycles) 204 99 199 Winding 2: Phase A Phase B Phase C (Amp Cycles) 199 99 199 Winding 3: Phase A Phase B Phase C

Start|| [1] @ Cal || **24 IPSCOM - [Secondary ...** a² OMICRON QuickCMC - [T... | ^{[63}] WAYNES WORLD - Micros... | D-IPSPlot - [M3311: C:\New...

5004 出版 3:06 PM

Vector Metering: A:Y:Y, 1:1 Ratio, 1:1 CTs, Normal

W2, Phase A at 180 degrees W3, Phase A at 180 degrees

Digital Oscillography: Δ :Y:Y, 1:1 Ratio, 1:1 CTs, Normal

Analog Traces 201

\triangle :Y:Y, yyy, 1:1 Ratio, 1:1 CTs, Roll W1, ØA

Three Line: Δ: Y: Y, 1: 1 Ratio, 1: 1 CTs, W1, Roll ØA

Advanced Metering: :Y:Y, 1:1 Ratio, 1:1 CTs, W1, Roll ØA

Levels of negative and zero sequence current, Positive sequence current not at phase current level

Advanced Metering: :Y:Y, 1:1 Ratio, 1:1 CTs, W1, Roll ØA

Vector Metering: Δ: Y: Y, 1:1 Ratio, 1:1 CTs, W1, Roll ØA

W1, Phase A at 0 degrees (180) W2, Phase A at 0 degrees W3, Phase A at 0 degrees

Digital Oscillography: :Y:Y, 1:1 Ratio, 1:1 CTs, W1, Roll ØA

Δ :Y:Y, yyy, 1:1 Ratio, 1:1 CTs, W1, Roll ØC

Three Line: :Y:Y, 1:1 Ratio, 1:1 CTs, W1, Roll ØC

Transformer Protection

Advanced Metering: ∆:Y:Y, 1:1 Ratio, 1:1 CTs, W1, Roll ØC

Transformer Protection

Vector Metering: :Y:Y, 1:1 Ratio, 1:1 CTs, W1, Roll ØC

Transformer Protection

Digital Oscillography: :Y:Y, 1:1 Ratio, 1:1 CTs, W1, Roll ØC

Commissioning Tools Make Your Life Easier!

- Advanced Metering
	- Sequence components for all windings
		- Positive, negative and zero
- Restraint and differential currents
- Vector Metering
	- Uncompensated
		- Raw signal
	- **Compensated**
		- Post vector and ratio corrections
- Digital Oscillography
	- All winding currents

WSU Hands-On Relay School 2018

WSU Hands-On Relay School 2018 **Transformer Protection**

WSU Hands-On Relay School 2018 **Transformer Protection**

4 Winding
WSU Hands-On Relay School 2018 **Transformer Protection**

4 Winding w/Current Summing

Unique Features of Beckwith Transformer Protection Relays

- Voltage inputs with overexcitation protection
- \blacksquare Adaptive overexcitation restraint based on 5th harmonic
- \blacksquare Use of 2nd and 4th harmonic for inrush restraint
- Up to three ground directional differential elements
- \blacksquare Current summing for 51 and 87GD functions to be used with breaker and a half configuration
- Through fault monitoring to schedule early maintenance and prevent transformer failures
- \blacksquare Graphical display of uncompensated and compensated phasors for each winding to help with test and commissioning
- \blacksquare Easy to access metering screens for test and commissioning
- \blacksquare User friendly setting of transformer/CT connection configurations

References

- *1. IEEE Guide for Transformer Protection*, ANSI/IEEE C37.91-2008.
- *2. IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems,* IEEE Std. 142-1991.
- *3. Protective Relaying: Principles and Applications, 3r^d Ed.;* Lew Blackburn and Thomas Domin, CRC Press 2007; ISBN# 978-1-57444- 716-3
- *4. Protective Relaying for Power Generation Systems*; Donald Reimert, CRC Press 2006; ISBN#0-8247-0700-1.
- *5. Industrial Power Distribution*; Dr. Ralph E. Fehr III, Wiley IEEE Press 2016; ISBN# 978-1-119-06334-6
- *5. Optimizing Transformer Protection*, Wayne Hartmann, presented at the Doble Conference 2016

Beckwith ElectricProtection Seminar

Thank You

Questions?

WSU Hands-On Relay School 2018 **Transformer Protection**

Interface and Analysis Software: Desirable Attributes

- \blacksquare NERC "State of Reliability 2013"
- $\qquad \qquad \blacksquare$ 30% of Relay Misoperations are due to human interface error
	- •Programming too complex
	- •Commissioning difficult
	- \bullet Period Testing difficult

Figure 4.8: NERC Misoperations by Cause Code from 2011Q2 to 2012Q3

- Incorrect setting/logic/design errors
- Relay failures/malfunctions
- Communication failures
- Unknown/unexplainable
- AC system
- As-left personnel error
- DC system
- \blacksquare Other

Interface and Analysis Software: Desirable Attributes

- PC Software package for setpoint interrogation and modification, metering, monitoring, and downloading oscillography records
- Oscillography Analysis Software package graphically displays to facilitate analysis, and print captured waveforms

Be menu-driven, graphical, simple to use

 \blacksquare Autodocumentation to eliminates transcription errors

How do you set a relay?

- Set the configuration (relay environment)
- **Set elements**
- \blacksquare Define tripping and blocking assignments
- \blacksquare Review/print summary

Transformer Protection

224

BECKWITH=

ELECTRIC=

CO. INC.

Creating NEW File

BECKWITH-

ELECTRIC

CO. INC.

BECKWITH CO. INC. **ELECTRIC=**

Transformer Protection

Connect to the Relay

BECKWITH

ELECTRIC

CO. INC.

BECKWITH $=$ CO. INC.

BECKWITH= CO. INC. **ELECTRIC=**

Transformer Protection

BECKWITH= CO. INC. **ELECTRIC=**

Transformer Protection

230

Transformer Protection

BECKWITH

ELECTRIC

CO. INC.

Through Fault Recorder

Breaker Monitor

g

Transformer Protection

Example:

Programmable Logic

Example:

Programmable Logic

Graphic Metering and Monitoring

- **Metering of all measured inputs**
	- - Measured and calculated quantities
		- **Instrumentation grade**
- Commissioning and Analysis Tools
	- Advanced metering
	- Event logs
	- Vector meters
	- -R-X Graphics
	- -Oscillograph recording

Transformer Protection

Primary Metering And Component Metering

Transformer Protection

BECKWITH-CO. INC. **ELECTRIC**

Secondary Metering, Components Metering, and Status

Event Log Trigger

Sequence of Events Recorder (total 512 Events are stored)

BECKWITH- \bigcirc CO. INC.

BECKWITH=

ELECTRIC=

CO. INC.

243

