

Commission canadienne de sûreté nucléaire

Canadian Regulatory Approach for Safe Long Term Operation of Nuclear Power Plants

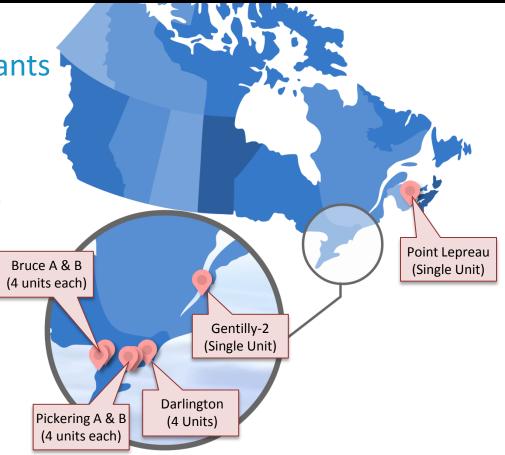
Technical and Regulatory Issues Facing Nuclear Power Plants: *Leveraging Global Experience* June 1 & 2, 2016

Chicago, IL

Dr. D. Miller, Dr. H. Khouaja Canadian Nuclear Safety Commission

Technical and Regulatory Issues Facing Nuclear Power Plants: Leveraging Global Experience

CANADIAN NUCLEAR POWER PLANTS PROFILE



Canada's Nuclear Power Plants

- Six NPPs have operating licences
- 19 reactor units are operational
- Pickering Units 2 & 3 in safe storage
- Gentilly-2 shut-down 2012, transitioning to safe storage

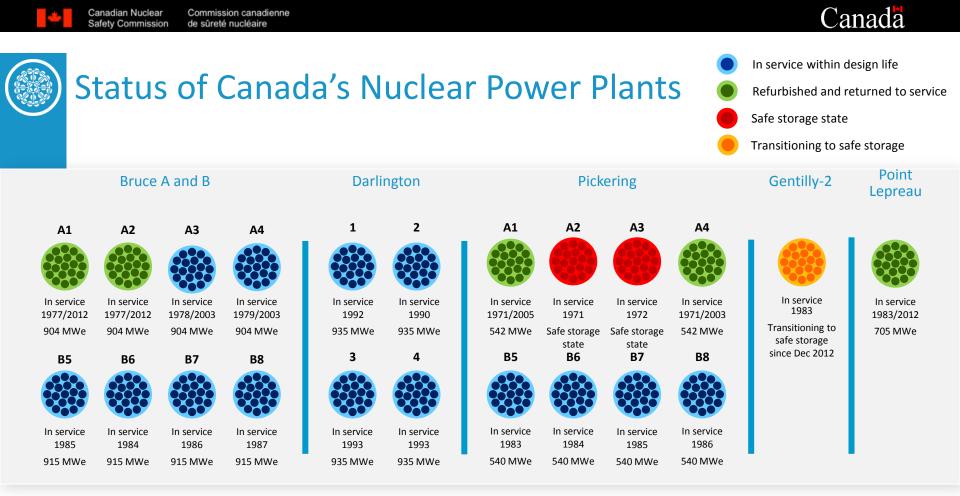
Ontario's electricity depends on nuclear power



CANDU Reactor

- Pressure tube type Pressurized Heavy Water Reactor (PHWR) with calandria vessel
- Major components of Primary Heat Transport System (PHTS):
 - Fuel Channels (380 480 FCs*)
 - Feeders Pipes (760 960 feeders*)
 - Steam Generators (4 12 SGs*)

* Number of component items differs at each plant



Calandria

Fuel Channels

(Pressure Tubes)

E-doc 4491625 International Seminar on AM and Safe LTO September 16, 2014, Ottawa, Canada

Technical and Regulatory Issues Facing Nuclear Power Plants: Leveraging Global Experience

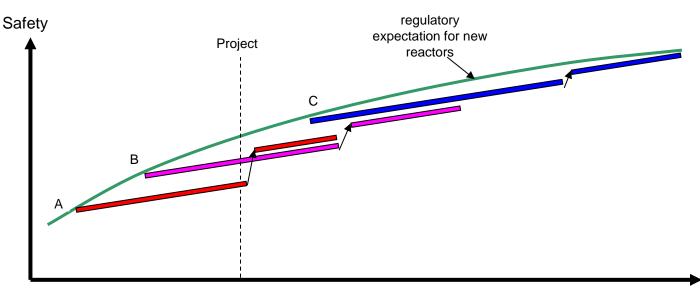
REGULATORY APPROACH TO LONG TERM OPERATION

Evolution of Approach to Long Term Operation

- Decision to refurbish is an economic one, made by the operator based on business needs such as
 - Strategy, cost, plant condition, etc.
- Current approach to long term operation for nuclear power plants in Canada is based on application of the Periodic Safety Review (PSR)
 - 2000 to 2006 : IAEA documents used to guide the reviews
 - 2008 to 2015 : Regulatory Document, RD-360 "Life Extension of Nuclear Power Plants" was used
 - 2015 to present: CNSC REGDOC-2.3.3, "Periodic Safety Reviews" is being used

- REGDOC-2.3.3 requires that the following be carried out:
 - Periodic Safety Review (PSR) to establish the scope of work required for long term operation of a nuclear power plant, and
 - Review against modern standards, best practices, operating experience, research findings to re-baseline the safety case
- Based on the results of the PSR, licensees establish:
 - An Integrated Implementation Plan (IIP) for the necessary plant refurbishment, safety upgrades and other compensatory measures, and
 - Any gaps with modern standards must be justified and agreed to by regulator

Process Overview: Periodic Safety Review


- The Periodic Safety Review (PSR) is a comprehensive self-assessment carried out by the licensee, guided by:
 - CNSC REGDOC-2.3.3, "Periodic Safety Reviews"
 - IAEA Safety Guide, SSG-25, "Periodic Safety Review (PSR) of Nuclear Power Plants", 2013
- The PSR enables determination of <u>reasonable and practical</u> <u>modifications</u> that should be made to
 - Enhance the safety of the facility to a level approaching that of modern plants
 - Supports long term operation

Continuous Improvement in Nuclear Safety

Time

Process Overview: Integrated Implementation Plan

- Process involves replacement, maintenance, and/or modifications to major systems, structures and component
 - Steam Generators
 - Fuel Channels/Feeders
- Licensees address modern high-level safety goals to identify safety upgrades
 - Emergency Filtered Containment Venting System
 - Makeup capability to Shield Tank (or Calandria Vault) to support In-Vessel Retention
- Licensees may proceed with the activities supporting long term operation upon acceptance of the plan by CNSC staff
 - Licence is amended to include appropriate licence conditions for the return-toservice phase of the project

Process Overview: Return-to-Service

- Return-to-service is based on the licensee's ability to demonstrate that new and existing plant systems, structures and components conform to
 - physical, functional, performance, safety, and control requirements
- The process of returning to service includes progressing to regulatory <u>hold points</u>
 - typically aligned with facility commissioning activities, starting from fuel loading

Technical and Regulatory Issues Facing Nuclear Power Plants: Leveraging Global Experience

LONG TERM OPERATION: CURRENT CHALLENGES

Nuclear Risk Reduction (1/3)

• Fitness for service of aging components

- Reactor units approaching assumed design life of 210,000 equivalent full power hours (EFPH)
- Verification of safe operation up to 247,000 EFPH

Refurbishment Projects

- Assessments of PSR and IIP
- Project execution

• Fukushima action items

- Licensees continuing to implement Fukushima actions through Station-Specific Action Items
- Regulatory Effectiveness and Transparency
- Public Awareness and Acceptance

Nuclear Risk Reduction: Strengthening Defence-in-Depth (2/3)

- Strengthened accident prevention to reduce risk to as low as reasonably practicable:
 - Inherent safety features
 - Well-balanced facility design to eliminate potential vulnerabilities
- Increased focus on accident prevention and mitigation, and emergency response to protect the public :
 - Criteria for plant self-sufficiency to maintain containment integrity
 - Onsite severe accident management to prevent large radiation release and avoid offsite contamination
 - Integrated onsite and offsite response capability tested and regularly exercised
- Continuous safety improvements
 - Operating experience (Fukushima)
 - R&D (new findings)

Regulatory Effectiveness and Transparency

- Publication of Periodic Safety Reviews, REGDOC-2.3.3
 - Describes the regulatory requirements and guidance for PSR implementation on a periodic basis
 - Move to a 10-year operating licence
 - Can be used to address long term operation beyond assumed design life
- Publication of "Conduct of Licensed Activities: Construction and Commissioning Programs", REGDOC-2.3.1
- Development of *Licence Application Guide* (LAG) for Operation, REGDOC-1.1.3
 - Provides further clarity on the licence renewal requirements
- Provides mechanism for PSR reviews and IIP to be credited in licence application
 International Seminar on AM and Safe LTO September 16, 2014, Ottawa, Canada

Public Awareness and Acceptance

- Public awareness and understanding of the scientific, technical, economic and legal aspects of nuclear activities:
 - demystify the unknown to change public perception
 - reveal the truth instead of creating it
 - articulate clearly why nuclear energy is safe
 - emphasize actual versus probable
- Public acceptance depends on risk tolerance:
 - explain how safe is safe enough
 - effectively communicate the risk to the public to eliminate risk bias
 - communicate within a broad range of possibilities
 - compare the risk of a nuclear accident to societal risks

ADDITIONAL INFORMATION

Defence-in-Depth Framework for Nuclear Power Plants

(from: Implementation of Defence in Depth at Nuclear Power Plants, NEA 2016)

	Level	Implementation
1.	To prevent deviations from normal operation, and to prevent failures of structures, systems and components (SSCs) important to safety	 Conservative design High quality construction (e.g., appropriate design codes and materials, design procedures, equipment qualification, control of component fabrication and plant construction, operational experience) A suitable site was chosen for the plant with consideration of all external hazards (e.g. earthquakes, aircraft crashes, blast waves, fire, flooding) in the design Qualification of personnel and training to increase competence. Strong safety culture Operation and maintenance of SSC in accordance with the safety case
2.	To detect and intercept deviations from normal operation, to prevent AOOs from escalating to accident conditions and to return the plant to a state of normal operation	 Inherent and engineered design features to minimize or exclude uncontrolled transients to the extent possible Monitoring systems to identify deviations from normal operation. Operator training to respond to reactor transients
3.	To minimize the consequences of accidents, and prevent escalation to beyond design basis accidents	 Inherent safety features Fail-safe design Engineered design features, and procedures that minimize consequences of DBAs Redundancy, diversity, segregation, physical separation, safety system train/channel independence, single-point failure protection Instrumentation suitable for accident conditions Operator training for postulated accident response

Defence-in-Depth Framework for Nuclear Power Plants (2)

(from: Implementation of Defence in Depth at Nuclear Power Plants, NEA 2016)

	Level	Implementation
4	 To ensure that radioactive releases caused by severe accidents OR Design Extension Conditions are kept as low as practicable 	 Equipment and procedures to manage accidents and mitigate their consequences as far as practicable Robust containment design Complementary design features to prevent accident progression and to mitigate the consequences of Design Extension Conditions Severe accident management procedures
5	. To mitigate the radiological consequences of potential releases of radioactive materials that may result from accident conditions	 Emergency support facilities Onsite and offsite emergency response plans Plant staff training on emergency preparedness and response

Post-Fukushima Enhancements to Defence in Depth: NPP Example (1)

- Level 3: Protecting facilities including spent fuel pools
 - Flood protection
 - Makeup water capability and instrumentation
- Level 4: Preventing and mitigating severe accidents
 - Enhanced backup power for equipment, telecommunications, and emergency facilities
 - Upgraded instrumentation
 - Protecting fuel
 - makeup water capability to steam generator and primary heat transport emergency core cooling and dousing spray systems
 - Preventing severe core damage
 - makeup water capability to moderator system and calandria vessel/vault
 - enhanced pressure relief for calandria vessel/vault

Post-Fukushima Enhancements to Defence in Depth: NPP Example (2)

- Level 4: Preventing and mitigating severe accidents (cont'd)
 - Protecting containment
 - passive hydrogen recombiners
 - containment cooling and filtered venting
 - Severe Accident Management Guidelines validation/exercise

• Level 5: Protecting the public

- automated real-time boundary radiation monitoring
- source term estimation capability
- integrated emergency plans and full-scale emergency exercises
- study of consequences of hypothetical severe nuclear accident
- pre-distribution of potassium-iodine pills

Find out More About Us

Visit us online

Like us on Facebook

View us on YouTube

Subscribe to updates

Contact Us

Canada