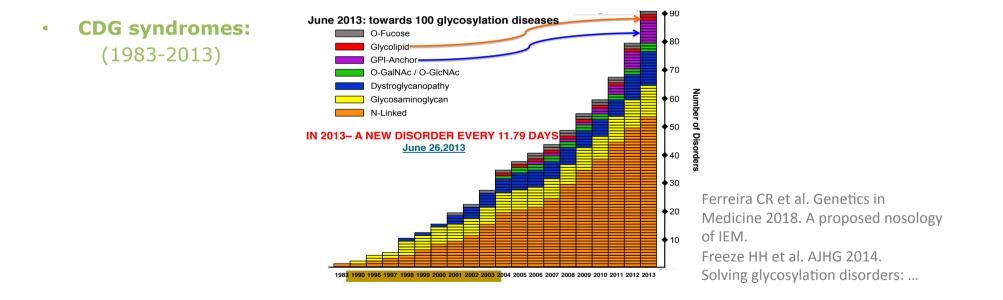
Inborn Errors of Metabolism and Epilepsy

Sabine Grønborg, MD Overlæge Center for Sjældne Sygdomme og Center for Medfødte Stofskiftesygdomme BørneUngeKlinikken og Klinisk Genetisk Klinik Rigshospitalet

> NNPS møde pre-course September 2018

Disclosures

Sabine Grønborg NNPS pre-course, 2018.09.05

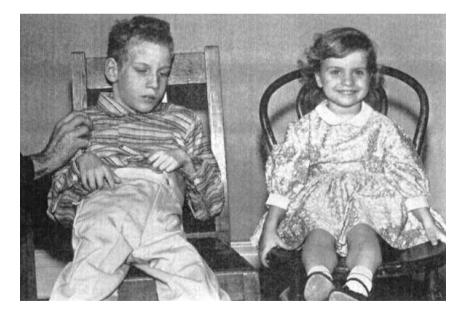

Speaker honoraria from Novo Nordisk and Actelion Travel grants from Sanofi Genzyme and Merck

- PI Arimoclomol prospective study in patients diagnosed with Niemann Pick disease type C, Orphazyme
- SI Phase 2/3 study on Glut1 deficiency, Ultragenyx
- SI Phase 1/2 study on MLD, Shire
- SI Phase 2 study alpha-mannosidosis, Zymenex/Chiesi

Inborn Errors of Metabolism (IEM)

Sabine Grønborg NNPS pre-course, 2018.09.05

- Genetic defects in the biosynthesis or breakdown of substances in specific pathways
- Historically identified by specific biochemical test
- **Total number** of identified IEM **increasing** exponentially (currently **1015!**)


Inborn Errors of Metabolism (IEM)

Sabine Grønborg NNPS pre-course, 2018.09.05

- Genetic defects in the biosynthesis or breakdown of substances in specific pathways
- Historically identified by specific biochemical test
- Total number of identified IEM increasing exponentially (currently 1015!)
- Increasing number of IEM can be treated by metabolic interventions
- Phenylketonuria (PKU):

Treatment with	protein reduced diet	
	amino acid substitution	
	phe monitoring	

- → excellent outcome
- Biotinidase deficiency
 Treatment with biotin supplementation

Inborn Errors of Metabolism - Categories

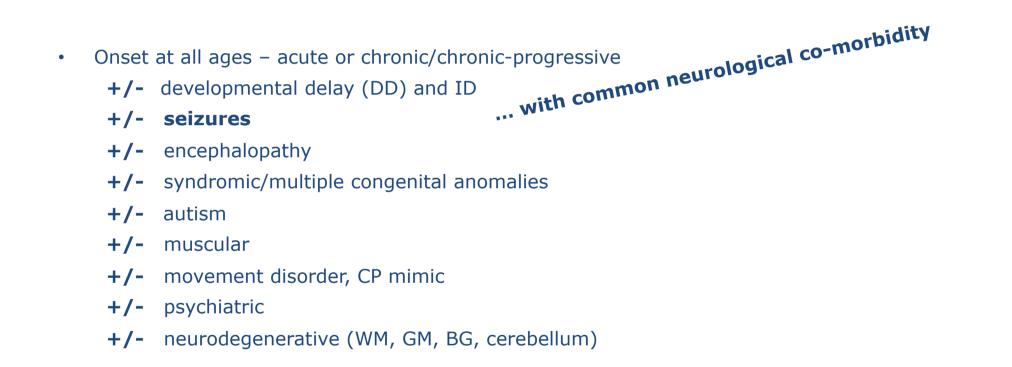
Sabine Grønborg NNPS pre-course, 2018.09.05

- Intermediary metabolism
 - standard metabolic tests
 - fluctuating symptoms, acute presentations
 - therapeutic interventions often possible
- Biosynthesis/breakdown of complex molecules
 - slowly progressive
 - specific analyses necessary for diagnostics
- Neurotransmitter diseases
- Metabolism of vitamines og co-factors
- Metabolism of metals

amino acids, carbohydrates, fatty acids, mitochondrial energy metabolism, urea cycle,

...

Epilepsy can manifest in all Metabolism of ups ins/ pyrimidines, lysomomal and peroxisomal diseases, isoprenoids/sterols, ...


IEM – neurological symptoms

Sabine Grønborg NNPS pre-course, 2018.09.05

- Onset at all ages acute or chronic/chronic-progressive
 - +/- developmental delay (DD) and ID
 - +/- seizures
 - +/- encephalopathy
 - +/- syndromic/multiple congenital anomalies
 - +/- autism
 - +/- muscular
 - +/- movement disorder, CP mimic
 - +/- psychiatric
 - +/- neurodegenerative (WM, GM, BG, cerebellum)
- IEM as cause probably underdiagnosed (e.g. found in **5-15%** of patients with ID)

Sabine Grønborg NNPS pre-course, 2018.09.05

• IEM as cause probably underdiagnosed (e.g. found in **5-15%** of patients with ID)

IEM and CNS manifestations - Challenges

Sabine Grønborg NNPS pre-course, 2018.09.05

- Increasing number of IEM
- Overlapping and unspecific symptoms
- Possible lack of biochemical markers (or unavailable)
 - → Making a diagnosis is challenging

! Consider IEM early on
! Define at risk-patient population
! Optimize diagnostic strategy

... because timely diagnosis has the potential to improve outcome

IEM and Epilepsy

Sabine Grønborg NNPS pre-course, 2018.09.05

- > **370 IEM** disease genes have been associated with epilepsy and seizures
- **25%** of these IEM have a specific treatment option
- Defects in energy metabolism, metabolism of amino acids, CDGs, lysosomal disorders, ...

Metabolic Brain Disease https://doi.org/10.1007/s11011-018-0288-1

REVIEW ARTICLE

 How often does IEM underlie pediatric epilepsies? Contemporary scope of inborn errors of metabolism involving epilepsy or seizures

Birutė Tumienė^{1,2} · Borut Peterlin³ · Aleš Maver³ · Algirdas Utkus¹

Treatable "epileptic" IEMs

Sabine Grønborg NNPS pre-course, 2018.09.05

Vitamin responsive metabolic epilepsies

- Pyridoxine-dependent epilepsy
- PLP-dependent epilepsy
- Biotinidase deficiency

Selected amino and organic acid disorders

- Serine synthesis defects
- Molybdenum co-factor deficiency
- Creatine synthesis defects
- Disorders of cobalamin metabolism
- Glycine encephalopathy

Lysosomal diseases

• Neuronal ceroid lipofuscinosis (CLN2)

Transportopathies

- Glucose transporter 1 deficiency
- Cerebral folate deficiency
- Biotine thiamine responsive basal ganglia disease

Mitochondriopathies

Pyruvate dehydrogenase deficiency

Neurotransmitter disorders

• Disorders of biopterin synthesis

Metabolic crisis of different IEM

• e.g. urea cycle defects, MSUD

Treatable "epileptic" IEMs - PDE

Sabine Grønborg NNPS pre-course, 2018.09.05

Vitamin responsive metabolic epilepsies

- Pyridoxine-dependent epilepsy (PDE)
- **PLP-dependent epilepsy (PNPO)**
- Biotinidase deficiency

Pyridoxine-dependent epilepsy (PDE):

ALDH7A1 gene - Antiquitin (a-aminoadipic semialdehyde dehydrogenase) deficiency – AR
Defect in lysine catabolism leading to pyridoxal-5'-phosphate (PLP) depletion
Early onset epileptic encephalopathy (milder forms reported)

Biochemical **biomarkers**

Therapeutic trial with **pyridoxine** 100 mg i.v. OR 30 mg/kg/d p.os., continue in responders

- + lysine-restricted diet
- + L-arginine supplementation together **improving cognitive outcome**

Treatable "epileptic" IEMs - PNPO

Sabine Grønborg NNPS pre-course, 2018.09.05

Vitamin responsive metabolic epilepsies

- Pyridoxine-dependent epilepsy (PDE)
- **PLP-dependent epilepsy (PNPO)**
- Biotinidase deficiency

Pyridoxal-5'-phosphate (PLP) dependent epilepsy:

- PNPO Pyridoxine-5'-phosphate oxidase rate limiting step in synthesis of PLP
- AR rare
- Severe early-onset epileptic encephalopathy
- Dystonia, metabolic derangement, gastrointestinal symptoms
- Can lead to premature birth and mimic HIE
- **Treatment** with **PLP** 30-60 (-100) mg/kg/d p.os.
- Reported normal neurodevelopmental outcome with **early treatment**

Treatable "epileptic" IEMs – Creatine synthesis defect

Selected amino and organic acid disorders

- Serine synthesis defects
- Sulfite oxidase deficiency/Molybdenum cofactor deficiency
- Creatine synthesis defects
- Cobalamin deficiencies
- Glycine encephalopathy

Creatine synthesis defects:

- Guanidinoacetate methyltransferase (GAMT)
- Arginine:glycine amidinotransferase (AGAT)
- Decrease in cerebral creatine and accumulation of toxic metabolites (in GAMT)
- **ID** and **behavioural** problems (hyperacitivity, self injury, autism), movement disorder (40%)
- Severe and early seizures in GAMT, onset 3 months to 3 years
- Biomarkers: lack of creatine peak on **MRS**, creatine metabolites in urine/plasma
- **GAMT deficiency treatment**: creatine and ornithine supplementation, arginine restriction

Treatable "epileptic" IEMs – Glycine encephalopathy

Selected amino and organic acid disorders

- Serine synthesis defects
- Sulfite oxidase deficiency/Molybdenum cofactor deficiency
- Creatine synthesis defects
- Cobalamin deficiencies
- Glycine encephalopathy

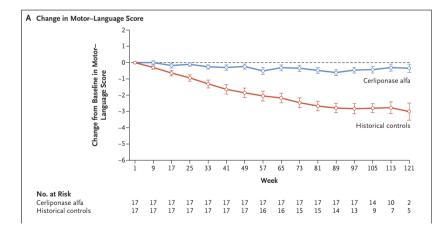
Glycine encephalopathy:

- Non-ketotic hyperglycinemia accumulation of glycine due to deficiency of glycine cleavage enzyme complex
- *GLDC/AMT/GCSH* genes (75/20/<1%)
- Biomarker: ↑glycine in blood and csf;
 ↑ csf-to-plasma glycine ratio
- Neonatal and infantile forms, 20% with attenuated outcome; rare later-onset/mild forms
- Classic neonatal presentation: progressive lethargy from birth, myoclonic jerks, apnea and burst-suppression on EEG; minimal psychomotor development
- Prevalence 1:50,000-60,000 in some populations
- Treatment: Sodium benzoate to lower glycine
 Dextromethorphan to block glycinergic NMDA receptor

Treatable "epileptic" IEMs – CLN2

Sabine Grønborg NNPS pre-course, 2018.09.05

Lysosomal diseases

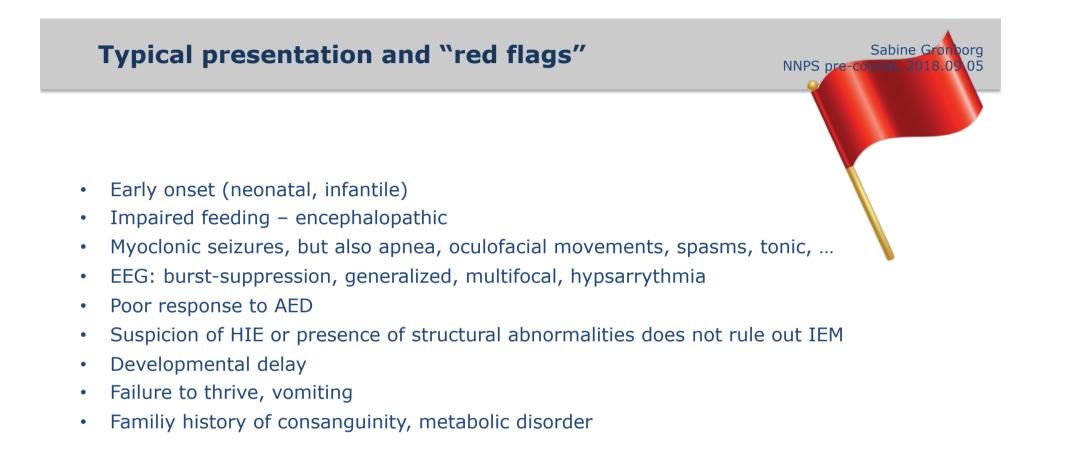

• Neuronal ceroid lipofuscinosis (CLN2)

<u>CLN2 disease – classic late infantile NCL</u> <u>(Jansky Bielschowsky disease):</u>

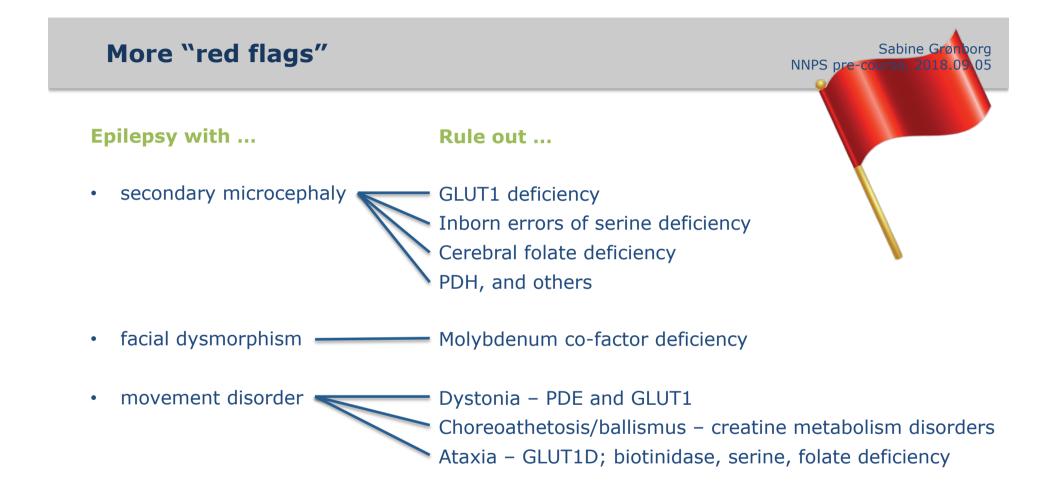
• Tripeptidyl-peptidase deficiency (TPP1)

- UK prevalence estimated 1:1,300,000
- Onset age 2-4 years: seizures, language delay or loss of language, myoclonia, ataxia, spasticity, dementia; vision loss starts age 4-6 years and progresses rapidly
- Diagnosis enzyme activity; molecular genetics analysis (average 2 yr delay after 1st seizure)
- Treatment:
 - i.c.v. ERT (cerliponase alpha)

Schulz A et al 2018. Study of intraventricular Cerliponase alfa for CLN2 disease. NEJM 378:1898



Age distribution


Sabine Grønborg NNPS pre-course, 2018.09.05

Neonatal period to early infancy	Late infancy to early childhood	Late childhood to adolescence
PDE	Creatine synthesis defects	CoQ ₁₀ deficiency
PNPO deficiency	Infantile and late infantile NCL	Lafora body and Unverricht-Lundborg disease
Folinic acid responsive seizures	Mitochondrial disorders (Alpers syndrome and others)	MERRF
Biotinidase deficiency	Sialidosis	MELAS
GLUT1 deficiency	Gangliosidosis	POLG-related disease: MIRAS, SCAE, MEMSA
Non-ketotic hyperglycinaemia	Milder variants of PDE and PNPO deficiency	Juvenile NCL
Serine biosynthesis defects	Congenital disorders of glycosylation	Late onset GM2 gangliosidosis (Sandhoff, Tay–Sachs)
Molybdenum cofactor and sulphite oxidase deficiencies		Gaucher type III
Menkes disease		Niemann–Pick type C
Disorders of peroxisome biogenesis and β -oxidation		Peroxisomal disorders
Congenital disorders of glycosylation Cathepsin D deficiency (congenital NCL)		

Rahman S et al 2013. Inborn errors of metabolism causing epilepsy. Dev Med Child Neurol 55: 23-36

Pearl PL 2016. Amenable treatable severe pediatric epilepsies. Semin Pediatr Neurol 23: 158

Mastrangelo M et al 2018. Actual insights into treatable inborn errors of metabolism causing epilepsy. J Pediatr Neurosci 13: 13

CASE 1

Sabine Grønborg NNPS pre-course, 2018.09.05

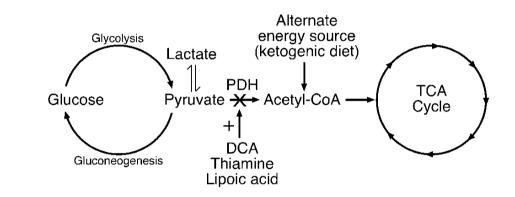
- **Muscular hypotonia** (1 month), reduced eye contact, generalized **seizures** (3 months)
- Lactic acidosis (6-9 mmol/l) and increased alanine in plasma amino acids
- Cerebral MRI (4 months): normal
- Targeted WGS analysis -

2031+ genes associated with IEM/epileptic encephalopathy/mitochondrial disease:

PDHA1 gene c.1176_1238dup (p.Pro412_Phe413ins21fs).

• Confirmed by enzymatic testing of **pyruvate dehydrogenase activity** in skin fibroblasts

X-linked PDH deficiency

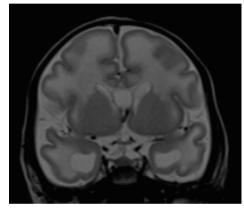

CASE 1 – Pyruvate dehydrogenase deficiency

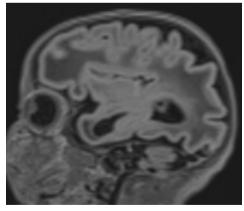
Sabine Grønborg NNPS pre-course, 2018.09.05

- Uncomplicated start with classical ketogenic diet
- Trial with **thiamine** (20 mg/kg/d)
- Seizure free after reaching ketosis
- Normalization of lactic acidosis
- Slight developmental progress

PDH defiency:

- X-linked (PDHA1) and five AR forms
- Broad phenotype; classical with onset 1st year, seizures, psychomotor delay and progression, structural changes on cerebral MRI
- **Ketogenic diet** can effectively treat seizures and motor symptoms if started early




CASE 2

Sabine Grønborg NNPS pre-course, 2018.09.05

- At term baby boy **seizures on 1**st **day** with myoclonia, tonic extension
- Seizures refractory to p.os. and i.v. escalation therapy
- Day 4: pyridoxin 100 mg i.v. no further seizures
- Continues levetiracetam and pyridoxine p.os. to two months of age
- Metabolic workup with **normal pipecolic** acid in plasma and csf
 - ➔ Pyridoxine withdrawal at age 2 months: seizuring after 3 days
- Starts pyridoxal 5' phosphate 30 mg/kg/d and achieves seizure control
- Gene panel for epileptic encephalopathy: normal results including
 ALDH7A1 and PNPO genes

MR of cerebrum day 3:

CASE 2

Sabine Grønborg NNPS pre-course, 2018.09.05

Mutations in *PROSC* Disrupt Cellular Pyridoxal Phosphate Homeostasis and Cause Vitamin-B₆-Dependent Epilepsy

Niklas Darin,¹ Emma Reid,² Laurence Prunetti,³ Lena Samuelsson,⁴ Ralf A. Husain,⁵ Matthew Wilson,² Basma El Yacoubi,^{3,17} Emma Footitt,⁶ W.K. Chong,⁷ Louise C. Wilson,⁸ Helen Prunty,⁹ Simon Pope,¹⁰ Simon Heales,^{2,9,10} Karine Lascelles,¹¹ Mike Champion,¹² Evangeline Wassmer,¹³ Pierangelo Veggiotti,^{14,15} Valérie de Crécy-Lagard,³ Philippa B. Mills,^{2,16,*} and Peter T. Clayton^{2,16,*}

Darin N et al 2016. Am J Hum Genet 99: 1325

Clinical WES: PLPBP/PROSC with homozygous splice site variant c.207+1G>A

Vitamin-B6-dependent epilepsy due to PLPBP/PROSC mutation

- Seizures well-controlled on PLP and LEV
- Delayed development

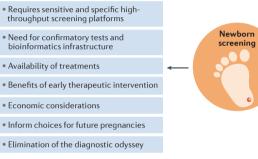
Diagnostic considerations

Sabine Grønborg NNPS pre-course, 2018.09.05

Traditional approach:

Selective screening Genetic confirmation

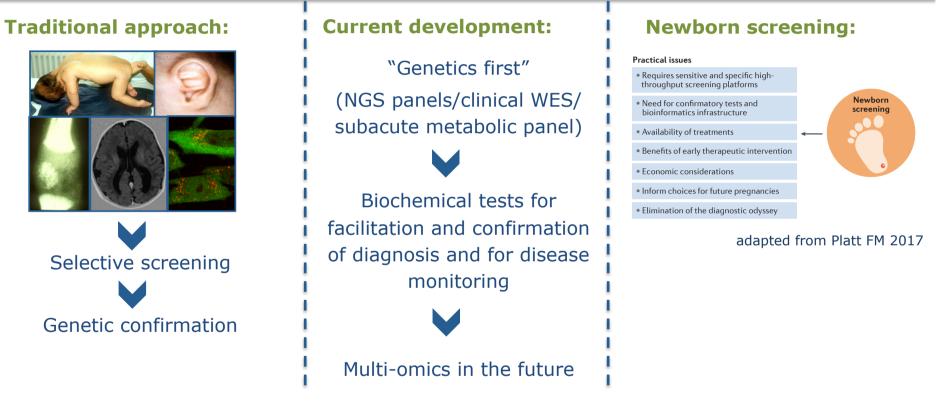
Current development:


"Genetics first" (NGS panels/clinical WES/ subacute metabolic panel)

Biochemical tests for facilitation and confirmation of diagnosis and for disease monitoring

Multi-omics in the future

Newborn screening:


Practical issues

adapted from Platt FM 2017

Diagnostic considerations

Sabine Grønborg NNPS pre-course, 2018.09.05

IEM are a rare but important differential diagnosis for epilepsy and especially early epileptic encephalopathy – Consider this when choosing the diagnostic tools!

Sabine Grønborg NNPS pre-course, 2018.09.05

Thanks to the patients and families,

my colleagues, and

THANK YOU FOR YOUR ATTENTION!