Novel HIV inhibitors developed against viral protein nuclear transport

 $\frac{Wagstaff\ KM^{1}}{Tachedjian\ G^{3}, Scanlon\ MJ^{2}\ and\ Jans\ DA^{1}}$

Dept. Biochemistry, Monash University, Clayton, Victoria
Burnett Institute, Melbourne, Victoria
Monash Institute of Pharmaceutical Sciences, Parkville, Victoria

Nuclear Import Is an Anti-viral Target

- Viral disease is one the greatest burdens of disease worldwide
- Lack of effective treatments:
 - · Development of resistant strains
 - Cytotoxicity
 - · Availability/High cost
- Urgent need for new therapeutics against novel targets
- Nuclear protein import is critical to infection by viruses including HIV, RSV, Dengue, Hendra, Rabies

Conclusions

- 1. Nuclear transport is a viable target for the development of anti-virals.
- Structural studies demonstrate different binding sites and affinities for different compounds- clustered around the NLS
- IN nuclear transport inhibitors represent a novel class of anti-HIV antivirals (potential for broad spectrum inhibition)

Monash University

David Jans Jackie Mao

MIPS

Martin Scanlon Stephen Heady **Burnett Institute**

Gilda Tachedjian David Tyssen Anna Hearps

