

Climate Change, People, and the Carbon Cycle

An emerging challenge:

Supporting Greenhouse Gas Management Strategies with Observations, Modeling, and Analysis

Why this is an urgent issue

- The primary cause of climate change and ocean acidification is the increase of greenhouse gases (GHGs) in the atmosphere, predominantly carbon dioxide
- Three reasons for having more and better information
 - Climate feedbacks
 - Success of GHG management
 - Ocean Acidification

Why Regional Scale Information?

- Societies are advancing efforts to reduce CO₂ emissions
- Mitigation efforts are diverse and vary by nation, region, & emission sector
- The complexity & variability of the carbon cycle, the scale of the problem, and the number of GHGs make tracking these efforts challenging, but surmountable
- Large-scale emission reduction approaches require <u>independent</u>, scientific monitoring to support verification and policy decisions
 - Ozone Depletion
 - Air Quality
 - Acid Rain

Tools for Global Monitoring Greenhouse Gases

- "Bottom-up" measurements (Accounting = "checkbook")
 - Emissions reporting
 - Reported and "verified" offsets
 - Site-specific measurements
- "Top-down" measurements (Validation = "bank statement")
 - Comprehensive atmospheric observation system
 - Ecosystem and ocean observations
- Reanalysis (compares checkbook with bank statement)
 - Transport model
 - Assimilation
 - Regional fluxes (emission and uptake)

there is more cackle than tackle."

Int'l Conf. Research Infrastructures 21-23 March, 2012

Specific Needs for the Future

- Sampling & Measurement
 - Improve techniques and approaches
 - Develop robust sampling instruments
 - Sustain long-term observations
 - Expand observing systems (3 ways)
- Data Records
 - Quantify "uncertainty"
 - Strengthen data centers
 - o Accessibility
 - o Evaluation
 - o Coordination

- Modeling and Analysis
 - Increase computing capacity
 - Achieve finer transport resolution
 - Improve ensemble assimilation
- Products
 - Determine societal need for products
 - Design and develop products
- Success
 - Centrally managed funds work

Backup Slides

GHGs - An emerging challenge JH Butler, NOAA Int'l Conf. Research Infrastructures 21-23 March, 2012

GHGs - An emerging challenge JH Butler, NOAA Page 9

One "Systems Approach"

GHGs - An emerging challenge JH Butler, NOAA

Climate Feedbacks

 Thawing permafrost has the potential to release huge amounts of CO₂ and methane.

GHGs - An emerging challenge JH Butler, NOAA

- Half of the CO₂ emitted by fossil fuel burning is absorbed by the ocean and biosphere.
- Will this continue?

Permafrost is thawing

Greenhouse Gas Management

REDD+

REDD+ helps to mitigate climate change through forests, and provides social and environmental benefits. It includes these essential components: creating incentives for not clearing standing forests, maintaining and expanding forest cover, sustainably managing forest and recovering degraded lands.

• What works?

• How well does it work?

Ocean Acidification

 Regardless of climate change, the ocean becomes increasingly acidic with rising CO₂ in the atmosphere.

