Inspecting Cargo in Containers with Safety

Brisbane 6th May Ken Fitzpatrick

Residual Gas in Containers Global Incidence

- Australian Study: 14,943 containers: 17% unsafe
- NZ Study: 519 containers: 18% unsafe
- EWS Europe: 20,000 containers: 12% unsafe
- Hamburg: 2,113 containers: 37% unsafe (Low Thresholds)
- RIVM Report: 1,000 containers: 21% unsafe triggered in 2010 by gas exposure incidents

Commercial experience of containers tested in the Netherlands

- > 20,000 containers measured in six month period in Holland and Belgium.
- 12% of containers above MAC force ventilated
- List of fumigants & toxic vapors found:
 - Toluene (C₇H₈)

- Phosphine* (PH₃)
- 1,2 Dichloroethane (C₂H₄CL₂) Carbon monoxide (CO)
- Formaldehyde (H₂CO)

- į
- Methyl Bromide* (CH₃BR)

Styrene (C₈H₈)

- Chloropicrin* (CCL₃NO₂)

Benzene (C₆H₆)

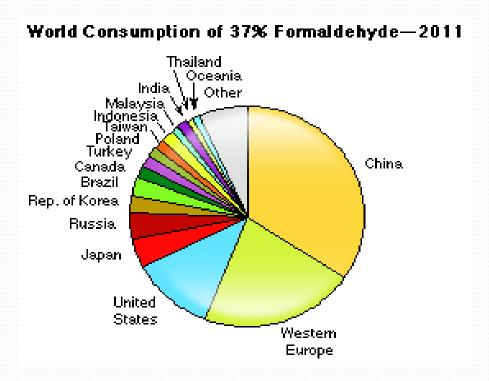
- Chloro Methane* (CH₃CL)

Xylene (C₈H₁₀)

- Hydrogen Gas (H2)

Why Do Containers Have Residual Gas?

- Dangerous concentrations of gases can be found in import shipping containers due to:
 - Residual **fumigants**
 - Desorption of cargo or production gases
- Transit:
 - Gas emissions in containers **rise with temperature** inside the container
 - Transit through tropics increases problem


Common Residual Gases Found in Containers – An International Problem

- Fumigants
 - Methyl Bromide
 - Phosphine (Aluminium phosphide)
 - Sulphuryl Fluoride
 - Ethylene Oxide
 - Hydrogen Cyanide
 - Chloropicrin
 - CO₂ (Controlled Atmosphere)

- TICs (Toxic Industrials)
 - Toluene
 - Benzene
 - Formaldehyde
 - Di Chloroethane
 - Cardon monoxide
 - Hydrogen
 - Ethylene di-bromide
 - Xylene
 - Acetone
 - Phenol
 - Methanol
 - And many more

Production and Consumption of Formaldehyde – Common residual Gas

Predicted total figure 30.5 million tons

An Australian Study Results

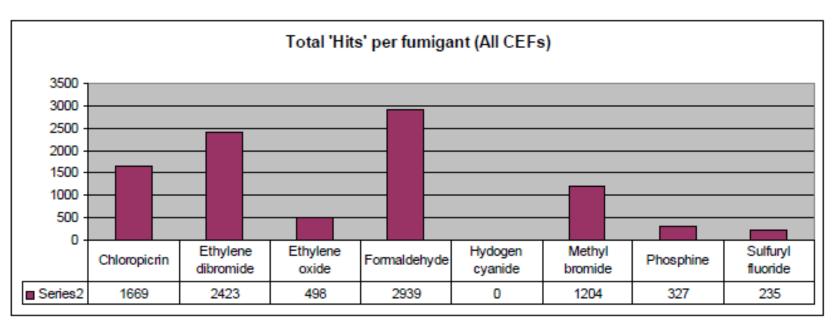


Figure 4: Out of a total of 45,826 scans, 9,295 'hits' were recorded . This table shows the breakdown of those hits per fumigant

Managing the Problem

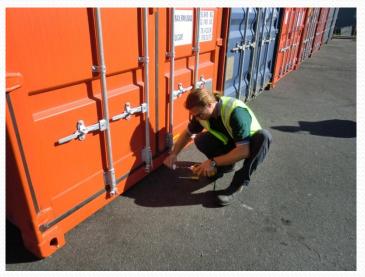
There are two steps in managing the problem of residual gas.

- The first step is to Monitor inbound containers with suitable testing equipment. Then risk profile the containers to identify what risks exist on a continuing basis
- Gas monitoring can be complex and costly
- Target gases and profiles can depend upon container contents and origins
- A mix of monitoring tools can be used: PID, detector tubes, GCMS etc

Gas Monitoring

It is *important* to measure gas concentrations before inspecting containers or devanning cargoes:

- Higher Volume: accurate and fast: eg Syft Voice 200/ portable GC
- Low volume: tubes/PID/other devices



Container Gas Testing

Managing the Problem

The second step is to remove residual gases found in the container:

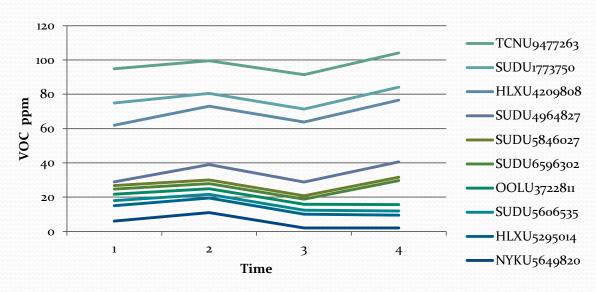
- Swedish recommended solution: force ventilate all containers
- Natural ventilation does not remove all gases, can be very slow. There is also a considerable security and weather risk
- Natural ventilation can leave gas pockets in the container
- Forced ventilation allows option to ventilate indoors (in warehouse or dock) and is much faster
- Forced ventilation is much faster and effectively removes trapped pockets of gas in the container



Typical Containers with residual Gas

- Any Fumigated Containers
 - Offshore fumigation must be checked but lower risk
 - Onshore fumigation must be checked HIGHER risk
 - Fumigation container should be labeled but mostly they are not
- Wooden products, furniture, laminated timber, chip or particle board can all container formaldehyde
- Shoes benzene or toluene to protect leather
- Textile often finished with formaldehyde
- Coir Matting, rubber products HCN and Ammonia
- Grains, cereals may have been fumigated
- Fresh produce may have been fumigated
- Batteries hydrogen
- Personal effects possible fumigation

Fumigation Warning on Containers



Passive Ventilation of Containers

Containers can be ventilated by passive or mechanical means. Mechanical or forced ventilation is a much faster option.

VOC concentration at the back of containers: Natural (Passive) ventilation

What equipment do we use?

- Gas Measurement
 - SYFT
 - Portable GC occasionally
 - PIDs, Rae, Multirae etc
- Gas Extraction
 - Aluminium console
 - High density foam Ultra light console wedge
 - Plastic console

All with options to extract to atmosphere or to capture gas on a carbon filter

Equipment for Degassing

Aluminium Console Plastic Console ULC wedge console

Typical residual gas readings and TLV

- Readings can range from anything from 1 to 2 ppm in the lower ranges to in excess of 500ppm
- The highest reading we saw exceeded 1500ppm of methyl bromide. That is rare
- Threshold limits vary according to country but for instance Formaldehyde limits have fallen from 5 ppm to 0.1 ppm in many countries. Methyl bromide sits between 0.25 and 5 ppm depending on the country
- Phosphine is 0.3 ppm generally but 0.1 ppm in some area

Current users of equipment

- Some Customs & Border Protection Authorities (including Quarantine)
- Some large multinationals
- Service providers, fumigation companies
- European importers in general
 - Spain/Holland/France/Germany/Denmark etc
- Organisations seeking to protect the health and safety of staff
- A variety of small importers either measure and degas containers themselves or outsource to service providers

Regulators starting to Spread the Message

Fumigated shipping containers – Venting prior to unpacking (by end user)

What is the problem?

O Disea chinging container in a decignated aper

Shipping co ventilated b quantity of venting pro the gas in t to persons

A Health and Safety Solution

Fumigated shipping containers – Clearance of methyl bromide (by fumigators)

What is the problem?

Shipping containers that are furnigated and ventilated may still contain a significant quantity of methyl bromide (MeBr) due to poor venting procedures, desorption or entrapment of the gas in packaging. This may present a risk to persons involved in unpacking these containers.

- Set up mechanical ventilation within the container to circulate the MeBr during fumigation and to vent the container on completion of fumigation.
- Set up sampling tubes within the container (at a depth of at least 1.5–2.0 metres from the door) to monitor the level of MeBr.
- 4. Furnigate the container as required by the

Summary

- Inspection of Shipping Containers can be hazardous but can be mitigated through
 - Measurement of gas levels before opening
 - Removal of gas if detected
- Hazards can come from both Fumigants and Toxic
 Industrial Chemicals
- Risk Awareness of the problem is a key factor in providing a safer workplace

Thank You For your attention

Come and see us at Stand C3 - look for the Nordiko Hat