

Lumbar Puncture Practical Issues and Indications

Peter Born Pediatric Neurology Rigshospitalet, Copenhagen

Disclosures

None related to the contense of this presentation

P. Born, 2018

Thomas Willis 1621-75 "fluid altered in endemic fever"

Emanuel Swedenborg 1688-1772 "spiritous lymph"

Heinrich Irenaeus Quincke (1842 – 1922)

REGION

CSF volumes

- Adult static volume of 65-150ml –from 5y!
- Adult production ca 500ml daily -0,5ml/min
- Neonate 25ml/day production, static spinal volme ~2ml/kg, total ~4ml/kg (<15kg)
- CSF ultrafiltrate of plasma
- CNS capillaries lack fenestration and transport vehicles.
- 99% water + electrolytes, glucose, proteins, enzymes, antibacterial factors etc.

REGION

CSF dynamics

- Produced in choroid plexus of ventricles
- Ventricles→ foramen Monroe
 →aquaeductus cerebri →for. Luschka and
 Magendii →subarachnoidal space
- Pulsatile flow
- Only 20% enters spinal subarachnoidal space- lumbar cistern 20ml
- CSF transit time appr 1 hour, replaced every 6 hours

CSF composition

Table 1. Normal Cerebrospinal Fluid Composition

	WBC/mm ³	Glucose (mg/dL)	Protein (mg/dL)		
Age	Mean (Range)	Mean (Range)	Mean <mark>(</mark> Range)		
Premature infants Term newborn 0–4 Weeks 4–8 Weeks > 8 Weeks	9 8.2 (0–22) 11 (0–35) 7.1 (0–25) 2.3 (0–5)	50 (24–63) 52 (34–119) 46 (36–61) 46 (29–62) 61 (45–65)	115 (65–150) 90 (20–170) 84 (35–189) 59 (19–121) 28 (20–45)		

WBC = white blood cells.

Bonadio 2013

Emergency Medicine Procedures. New York: McGraw-Hill; 2004:873.

P. Born, 2018

REGION

Bonadio 2014

P. Born, 2018

Schulga 2015

Tuffier's line

Doherty 2014

P. Born, 2018

Ravn et al 2018 P. Born, 2018

REGION

Needle type

- PDPH 36% for traumatic 22G Quinck needle
- PDPH 9% for atraumatic 24G needle

Choice of needle

Strupp et al 2001

P. Born, 2018

Emergency Medicine Procedures. New York: McGraw-Hill; 2004:873.

REGION

LP – practical aspects

- depth of LP=0,77cm +(2,56xBSA[m²])
- Ultrasound guidance possible
- Withdrawl of stilet after perforating dermis may reduce traumatic LP
- Re-insert stilet prior to cannula withdrawl (Strupp 1979)
- Do not aspirate CSF!

Post-dural puncture headache

13-36% after LP. Risc factors:

- Young age
- Female gender
- Previous PDPH
- Staff experience
- Needle type (size and shape)

REGION

Post-dural puncture headache treatment

L4

- Flat bed rest (little evidence)
- Fluids (little evidence)
- Pharmacological: analgesics, gabapentin, coffeine, aminophylline, steroid
- Epidural blood patch after 2-3 d: 70-98% success rate

Post-dural puncture headache in children

- Evidence for reduced incidence depending on needle type less clear –no difference between traumatic 22 and 25G needles –Crock 2014
- ? Longer procedure time for smaller needles (22 vs 25G)

Sedation

Chloral hydrate

P. Born, 20

REGION

Nusinersen

1 year LP experience in Copenhagen

- 7 subject with SMA 1-2, age 0-5 year
- 37 lumbar punctures, 22G Quincke needle

General anæstesia	4
Nitrous oxide	12
Dexmedetomidine	11
Local only	10

- Two operators 33 in 1. attempt, 4 in 2.or
 3. attempt
- One patient admitted for back pain, no
 <u>postdural headache</u>

Contraindications NICE bacterial meningitis guidelines

Box 5 Contraindications to lumbar puncture

- Signs suggesting raised intracranial pressure:
- - Reduced or fluctuating level of consciousness (Glasgow coma scale score <9 or a drop of 3 or more)
- - Relative bradycardia and hypertension
- - Focal neurological signs
- - Abnormal posture or posturing
- - Unequal, dilated, or poorly responsive pupils
- - Papilloedema
- - Abnormal "doll's eye" movements
- Shock (see box 2)
- Extensive or spreading purpura
- The child or young person has recently experienced convulsions and is not yet stabilised
- Coagulation abnormalities:
- - Coagulation results (if obtained) outside the normal range
- - Platelet count below 100×10⁹/l
- - Receiving anticoagulants
- Local superficial infection at the lumbar puncture site
- Respiratory insufficiency

P. Born, 2018

REGION

Contraindications

- Signs of raised ICP
- Thrombocytopenia < 40*10⁹/l (relative) or < 20*10⁹/l (absolute) or other coagulation disorders
- Anticoagulation (Vit K antagonists, therapeutic heparin, ADP receptor inhibitors)
- Ongoing seizures/coma/deep sedation
- Cardiovascular instability
- Spinal malformations
- Infection at puncture site

REGION

REGION

Intrathecal drug admistriation

- Chemotherapy (methotrexate, steroids, cytarabine..)
- Antibiotics (vancomycin)
- Baclofen
- Analgesia morphine, spinal anaesthesia
- Antisense oligonuceotides for RNA based therapy e.g. nusinersen for SMA
- Gene therapy with viral vectors –SMA, CMT, tumors, neurodegenerative conditions

LP -indications

- 1. Meningitis/encephalitis
- 2. Neuroinflammation
- 3. Neoplasia
- 4. Metabolic and neurodegenerative conditions
- 5. Neurosurgery
- 6. Intrathecal drug administration

Meningitis - Encephalitis

- Assessment of WBC, protein, glucose: WBC and Protein increased in first two months of life
- Culture and resistance testing
- IgG ratio
- Antibody titres-ratio to plasma

REGION

Meningitis-Encephalitis

Biofire[™] -multiplex PCR

Bacteria	Viruses				
Escherichia coli K1	Cytomegalovirus (CMV)				
Haemophilus influenzae	Enterovirus				
Listeria monocytogenes	Herpes simplex virus 1 (HSV-1)				
Neisseria meningitidis	Herpes simplex virus 2 (HSV-2)				
Streptococcus agalactiae	Human herpes virus 6 (HHV-6)				
Streptococcus pneumoniae	Human parechovirus				
Yeast	Varicella zoster virus (VZV)				
Cryptococcus neoformans/gattii					

BUT: several 100 pathogens can cause infection!

P. Born, 2018

Traumatic LP

- Incidence appr. 20% for all children, up to one third in neonates
- Decreased by use of local anaestetic

Correction for traumatic LP

- Not reliably established, BUT
- Appr. 1 WBC/mm3 for every 1000 RC

• Pred WBC=
$$CSF RBC \frac{CBC WBC}{CBC RBC}$$

- In adults, 90% of pt. with bacterial meningitis had a ratio of > 10 <u>measured WBC</u> predicted WBC
- Glucose usually unaffected, but protein
 P. Bornimereased

Autoimmune encephalitis

Only NMDAR and GAD65 have been diagnosed in Denmark (Boesen et al ..)

- GAD65 AB in serum –intrathecal synthesis can be analysed
- NMDA receptor AB (Wang 2015, 43 pt):
- ▶62.8% with + CSF had +serum
- > 100% patients with +serum had +CSF samples.
- CSF WBC increased in 58%

P. Born, 2018

REGION

Demyelination

- Acute demyelination: 63% pleocytosis, 52% pos. oligoclonal bands. OCB only predictive of MS in children older than 12 years (Boesen et al, poster)
- IgG index increased in 80-90% of MS patients, but also in many other conditions –very low specificity

CSV opening pressure in children

• upper limit 28 cm H2O (mean 19,8 ± 6,8)

REGION

CSV opening pressure in children

Factors influencing opening pressure:
Age?
BMI?
Sedation?
Position?

Avery 2010

Opening pressure vs age

D

Opening pressure vs BMI -3cm per 10-unit

Avery 2010

REGION

REGION

CSV opening pressure in children

- Sedation: depth AND agent
- Children sedated had 3.5cm H2O higher values
- Possible effect of pCO2

REGION

CSV opening pressure in children

No effect of leg position stretched/flexed

Conclusion:

- CSF opening pressure has to be interpreted in a clincal context
- values below 28 cm H2O do not support markedly increased pressure.

CSF pressure

• 90. centile of CSF in 500 children: 28 cm H_2O

CSF analysis in neurometabolic conditions

- Glucose, lactate
- Amino acids, pipecolic acid
- Dopamin metabolites: HVA, MHPG, VMA
- Serotonin metabolites: 5-MTHF
- Pterins: Biopterin, Neopterin

Neurometabolic conditions

- Mitochondrial disease
- Monoaminergic neurotransmitter disorders
- Disorders of amino acid neurotransmitter metabolism: GABA, glycine, serine
- Disorders of pyridoxine, glucose and folate metabolism

Monoamine neurotransmitter pathway

Sites of neurotransmitter defects: 1. Autosomal dominant and recessive **GTPCH** deficiency 2. 6 Pyruvoyl-tetrahydrobioterin synthase deficiency (PTPS) deficiency 3. Sepiapterin reductase (SPR) deficiency Dihydropteridine reductase (DHPR) 4. deficiency 5. PCD Tyrosine hydroxylase (TH) deficiency 6. Aromatic L amino acid decarboxylase 7. (AADC) deficiency 8. PLP

TABLE 1.

Selected Cerebrospinal Fluid Abnormalities in Disorders of Monoamine Neurotransmitter Metabolism and Tetrahydrobiopterin Synthesis*

Disorder	Levels in Cerebrospinal Fluid							
	Neopterin	Sepiapterin	Biopterin	5-HTP	HVA	5-HIAA	3-OMD	MHPG
Dopamine beta-hydroxylase deficiency						n	1	↓↓
Tyrosine hydroxylase deficiency					$\downarrow\downarrow$	n	n	Ļ
Aromatic-L-amino acid decarboxylase deficiency				<u>↑</u> ↑	$\downarrow\downarrow$	↓↓	111	
Monoamine oxidase A deficiency					Ļ	Ļ	n	Ļ
Dopamine transporter deficiency					1	n		
Dopamine-serotonin vesicular transport defect					n	n		
Guanosine triphosphate cyclohydrolase deficiency (autosomal recessive)	↓↓		↓↓		↓↓	Ļ		
6-Pyruvoyl-tetrahydropterin synthase deficiency	<u>†</u> ††		111		↓↓	↓↓		
Dihydropteridine reductase deficiency	n		n-↑		11	11		
Pterin-4-a-carbinolamine dehydratase deficiency (Primapterinuria)	↑-↑↑							
Dopa-responsive dystonia (Segawa disease)	Ļ		Ļ		Ļ	↓-n		
Sepiapterin reductase deficiency	n	11	Ť		111	111		
Abbreviations: 5-HIAA = 5-hydroxyindoleacetic acid (derived from serotonin 5-HTP = 5-hydroxytryptophan HVA = Homovanillic acid (derived from dopamine) 3-OMD = 3-ortho-methyldopa (derived from L-DOPA))							
ann oʻz 5-metroxy-4-nyaroxyprenyigiyor (norepinepinnik	metabolite)							

Rodan 2015, adapted from Hoffman, 2014

RESEARCH

Open Access

Prevalence of inherited neurotransmitter disorders in patients with movement disorders and epilepsy: a retrospective cohort study

Saadet Mercimek-Mahmutoglu^{12,6*}, Sarah Sidky¹, Keith Hyland³, Jaina Patel¹, Elizabeth J Donner⁴, William Logan⁴, Roberto Mendoza-Londono¹, Mahendranath Moharir⁴, Julian Raiman¹, Andreas Schulze^{1,2}, Komudi Siriwardena¹, Grace Yoon^{1,4} and Lianna Kyriakopoulou⁵

Abstract

Background: Inherited neurotransmitter disorders are primary defects of neurotransmitter metabolism. The main

154 patiens from Hospital for Sick Children, Toronto

-epilepsy and movement disorder

6 patients with inherited neurotranmitter disorders 14 patients with non-neurotransmitter disorders 130 patients without diagnosis When do we need to perform a diagnostic lumbar puncture for neurometabolic diseases? Positive yield and retrospective analysis from a tertiary center

Göknur Haliloğlu¹, Emine Vezir¹, Leyla Baydar², Saniye Önol², Serap Sivri², Turgay Coşkun², Meral Topçu¹ Units of ¹Pediatric Neurology, and ²Metabolism and Nutrition, Hacettepe University Faculty of Medicine, Ankara, Turkey

> SUMMARY: Haliloğlu G, Vezir E, Baydar L, Önol S, Sivri S, Coşkun T, Topçu M. When do we need to perform a diagnostic lumbar puncture for

When to do LP for neurometabolic disease?

- Haliloglu 2012: 62 pt, positive yield 16/62 (25,8%).
- Significant: diurnal variation, oculogyric crisis and consanguinity

Rigshospitalet

Oculogyric crisis

Solberg 2017

P. Born, 2018

When to do LP for neurometabolic disease?

- Infantile (epileptic) encephalopathy
- Microcephaly?
- Unexplained movement disorders: parkinsonism, dystonia and ataxia, hypotonia, hypertonia, hypokinesia especially with fluctuating symptoms
- Dysautonomia, sleep disturbance
- Ptosis, eye movement disorders
- Progressive motor or cognitive symptoms

REGION

2y 1m old boy

- First child of consanguineous parents originally from Pakistan
- Developmental arrest since 8 months, seizures since 6 months, intitially rare. Hypotonia, failure to thrive
- Daily seizures with: downward eye deviation, stiffness of one or both sides, oral dyskinesia, lasting hours

- CSF analysis 2 y 5 m old: ↓↓↓ HVA, normal 5 HIAA
- Homozygeous for mutation in exon 9 tyroxin hydroxylase (TH) gene
- Diagnosis: TH-Deficient Infantile Parkinsonism with Motor Delay
- Treatment with levodopa and later seligiline (MAO B inhibitor)

CSF sampling for metabolic disease:

- 4 hours glucose fasting
- Know your normal values: craniocaudal gradient of neurotransmitters
- Glucose, lactate, aminoacids, neurotransmitters
- Spin immediately if blood contaminated (lab technician present!)
- Snap freeze in liquid nitrogen immediately after

