

UNIVERSITÄT

Ureaplasma spp. isolated from genital samples in Switzerland: susceptibility patterns, resistance genes, and sequence type distribution

Valentina Donà^{1*}, Sara C Schneider¹, Regula Tinguely¹, Markus Hilty^{1,2}, Thomas Bodmer³, and Andrea Endimiani^{1*}

¹Institute for Infectious Diseases, Faculty of Medicine, University of Bern, Bern, Switzerland; ²Department of Infectious Diseases, Bern University Hospital and University of Bern, Bern, Switzerland; ³Iabormedizinisches zentrum Dr Risch, Bern-Liebefeld, Switzerland

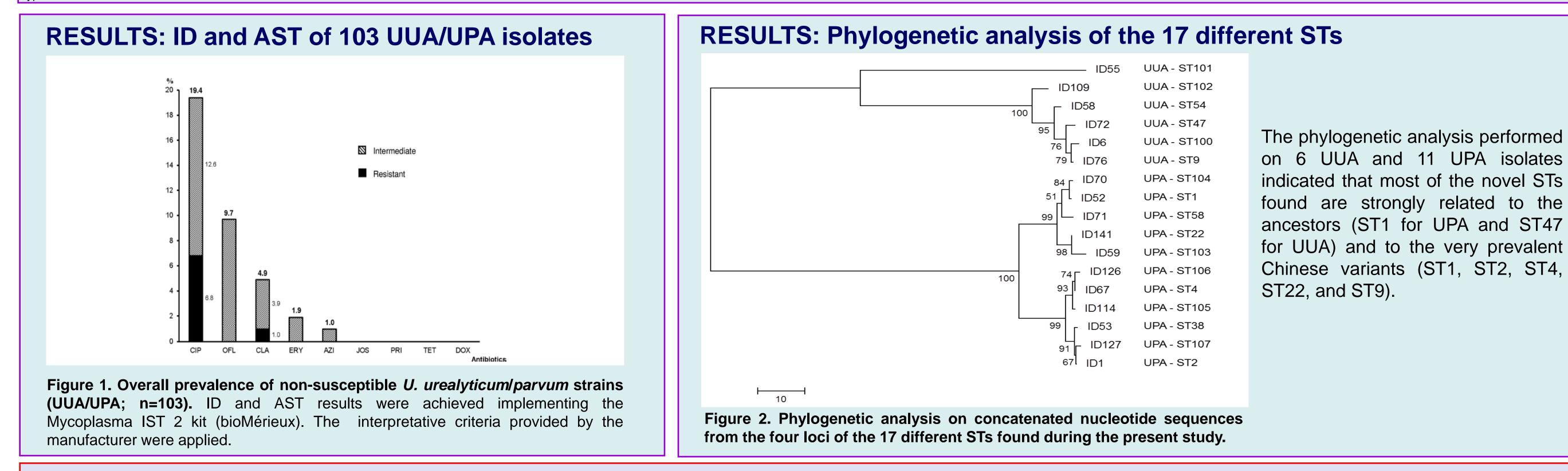
*Email contacts: valentina.dona@ifik.unibe.ch; andrea.endimiani@ifik.unibe.ch

INTRODUCTION

- Ureaplasma urealyticum, Ureaplasma parvum, and Mycoplasma hominis are causative agents of urogenital tract infections such as non-chlamydial and non-gonococcal urethritis, prostatitis, cervicitis, and pelvic inflammatory disease.
- Antibiotic resistance in U. urealyticum, U. parvum and M. hominis (MH) poses an increasing issue. However, data regarding antibiotic susceptibility is limited to several countries, whereas information about clonality is available only from China (Zhang et al., Eur J Clin Microbiol Infect Dis, 2014).
- To our knowledge, data on the antimicrobial susceptibility of genital mycoplasmas isolated in Switzerland are completely lacking. More importantly, information concerning the spread of specific clones at the international level is urgently needed. Therefore, the aim of this study was to fill these

MATERIALS AND METHODS

- \succ 140 genital samples collected in two laboratories from unique patients in Bern during 2014.
- ID and AST were obtained using the mycoplasma IST 2 kit (bioMérieux) and sequencing of 16S rDNA.
- Serovars were obtained with a PCR-based method (Kong *et al.*, J Clin Microbiol, 2000) and clonality was analyzed with MLST and expanded MLST (eMLST) as described previously (Zhang *et al.*, Eur J Clin Microbiol Infect Dis, 2014; Zhang *et al.*, Plos One, 2014).
- Quinolone and macrolide resistance were studied by sequencing gyrA/B, parC/E, as well as genes encoding 23S rRNA and L4/22 ribosomal proteins.
- > Phylogenetic analysis of the detected sequence types (STs) was performed using the


RESULTS: Clonal distribution, subtypes, antibiotic phenotypes and molecular characterization of 25 Ureaplasma isolates

Strain ID	Sample	Sex/Age	Species ^ª	MLST analysis							Antimicrobial susceptibility tests by using the IST 2 kit $^{ m d}$									MICs	(µg/ml) ^e	QRDR genes analysis				Macrolide resistance traits		
				ST	ftsH	rpl22	valS	thrS	ureG ^h	mba ^h	СІР	OFL	CLA	ERY	AZI	JOS	PRI	ТЕТ	DOX	CIP	AZI	GyrA	GyrB	ParC	ParE ^f	23S rRNA	L4	L22
6	GEN	F/22	UUA	100 ^b	40 ^c	11 ^c	4	4	5	6	R	I	I	I	S	S	S	S	S	0.5, S	≤0.064, S	wt	wt	wt	wt	both wt	wt	wt
41	SEM	M/35	UUA	Un	4	3	4	NA	5	10	S	S	S	S	S	S	S	S	S	-	-	-	-	-	-	-	-	-
55	CER/VAG	F/34	UUA	101 ^b	41 ^c	3	4	11	5	10	I	S	S	S	S	S	S	S	S	≤0.25, S	≤0.064, S	wt	wt	wt	wt	-	-	-
58	CER/VAG	F/34	UUA	54	6	3	4	11	5	10	I	I	S	S	S	S	S	S	S	≤0.25, S	≤0.064, S	wt	wt	wt	Thr417Val	-	-	-
66	CER/VAG	F /41	UUA	100 ^b	40 ^c	11 °	4	4	5	2	I	I	S	S	S	S	S	S	S	≤0.25, S	≤0.064, S	wt	wt	wt	wt	-	-	-
72	VAG	F/22	UUA	47	5	3	4	4	5	6	I	I	S	S	S	S	S	S	S	≤0.25, S	≤0.064, S	wt	wt	wt	Thr417Val	-	-	-
76	GEN	F/20	UUA	9	4	3	4	4	5	6	R	I	I		S	S	S	S	S	≤0.25, S	≤0.064, S	wt	wt	wt	wt	both wt	wt	wt
96	CER/VAG	F /33	UUA	101 ^b	41 ^c	3	4	11	5	10	R	I	R		I	S	S	S	S	≤0.25, S	≤0.064, S	wt	wt	wt	wt	both wt	wt	wt
109	VAG	F/17	UUA	102 ^b	6	2	2	11	5	29	R	I	S	S	S	S	S	S	S	≤0.25, S	≤0.064, S	wt	wt	wt	wt	-	-	-
1	CER	F/26	UPA	2	2	1	1	1	2	7	R	I	I	S	S	S	S	S	S	0.5, S	≤0.064, S	wt	wt	wt	Val417Thr	both wt	wt	wt
52	SEM	M/34	UPA	1	1	1	1	1	2	2	I	S	S	S	S	S	S	S	S	≤0.25, S	≤0.064, S	wt	wt	wt	wt	-	-	-
53	SEM	M/19	UPA	38	2	1	1	2	2	2	S	S	S	S	S	S	S	S	S	-	-	-	-	-	-	-	-	-
59	CER/VAG	F/36	UPA	103 ^b	1	12 °	1	1	3	2	S	S	S	S	S	S	S	S	S	-	-	wt ^g	wt ^g	wt ^g	wt ^g	-	-	-
67	VAG	F/36	UPA	4	2	2	1	1	2	2	I	S	S	S	s	S	S	S	S	1, S	≤0.064, S	wt	wt	wt	wt	-	-	-
70	CER/VAG	F/32	UPA	104 ^b	1	1	1	2	2	1	S	S	S	S	s	S	S	S	s	-	-	wt ^g	wt ^g	wt ^g	wt ^g	both wt ^g	wt ^g	wt ^g
71	CER	F/26	UPA	58	9	1	1	1	1	36 ^c	I	S	S	S	s	S	S	S	S	2, I	0.5, I	wt	wt	wt	Val417Thr	-	-	-
78	SEM	M/29	UPA	104 ^b	1	1	1	2	2	1	R	I	S	S	S	S	S	S	S	≤0.25, S	≤0.064, S	wt	wt	wt	wt	-	-	-
98	CER/VAG	F/48	UPA	4	2	2	1	1	2	2	S	S	S	S	S	S	S	S	S	-	-	-	-	-	-	-	-	-
103	CER/VAG	F/28	UPA	4	2	2	1	1	2	2	s	S	S	S	s	S	S	S	S	-	-	-	-	-	-	-	-	-
114	CER/VAG	F/37	UPA	105 ^b	2	2	1	2	2	2	s	S	S	S	s	S	S	S	s	-	-	-	-	-	-	-	-	-
126	CER/VAG	F/40	UPA	106 ^b	2	13 °	1	1	3	2	I	S	S	S	S	S	S	S	S	≤0.25, S	≤0.064, S	wt	wt	wt	wt	-	-	-
127	CER/VAG	F/29	UPA	107 ^b	2	1	9	1	2	7	S	S	S	S	S	S	S	S	S	-	-	-	-	-	-	-	-	-
134	CER	F/33	UPA	104 ^b	1	1	1	2	2	1	S	S	S	S	S	S	S	S	S	-	-	-	-	-	-	-	-	-
138	CER/VAG	F/41	UPA	4	2	2	1	1	2	2	S	S	S	S	S	S	S	S	S	-	-	-	-	-	-	-	-	-
141	SEM	M/33	UPA	22	1	2	1	1	3	2	R		S	S	S	S	S	S	S	4, R	≤0.064, S	wt	wt	Ser83Leu	wt	-	_	-

- Numerous new STs in both UUA and UPA were identified.
- The main Chinese clones were present: ST4 was the most prevalent among UPA isolates, but ST1, ST2, ST22, ST38, and ST58 were also detected. With regard to UUA, unique ST9, ST47, and ST54 were identified.
- Only 5 of 15 CIP-nonsusceptible isolates (based on the IST 2 kit) had mutations in the QRDRs. This previously observed phenomenon was ascribed to mechanisms not yet recognized; however, the IST 2 kit might overrate the FQ resistance (high MICs that are actually in the susceptible range with the microdilution method).
- In the QRDR, only the well-described Ser83Leu substitution in ParC conferred resistance to CIP, whereas both Thr417Val (for UUA) and Val417Thr (for UPA) ParE substitutions did not significantly influence the MICs.
- None of the four isolates nonsusceptible to macrolides possessed substitutions in L4, L22 or the 23S rRNA copies. This may be explained by the fact that: (i) our four isolates were actually susceptible to macrolides according to the CLSI

Note. GEN, genital specimen not better defined; VAG, vaginal swab; CER, cervical swab, SEM, semen; M, male; F, female; ST, sequence type; CIP, ciprofloxacin; OFL, ofloxacin; CLA, clarithromycin; ERY, erythromycin; AZI, azithromycin; JOS, josamycin; PRI, pristinamycin; TET, tetracycline; DOX, doxycycline; Un, undetermined; NA, not amplified; R, resistant; I, intermediate; S, susceptible; wt, wild-type protein; -, not performed ^a Species identification was obtained by sequencing the 16S rDNA; ^b New Sequence types (STs); ^c New alleles; ^d AST results obtained implementing the Mycoplasma IST 2 kit (bioMérieux) and interpreted according to the manufacturer's criteria; ^e MICs obtained in broth microdilution according to CLSI (tests repeated twice). Since interpretative criteria for CIP and AZI are not available from CLSI, MICs were interpreted according to the IST 2 kit criteria; ^f This is the first report of substitution Thr417Val in UUA; ^g These isolates were used as negative control for all PCR/DNA sequencing for QRDR and macrolide resistance genes; ^h Alleles for eMLST; eST type not available

criteria, and (ii) all macrolide-nonsusceptible strains were truly sensitive when tested with the microdilution method.

CONCLUSIONS:

> This is the first study analyzing susceptibility of Ureaplasma spp. isolates detected in Switzerland and the clonal distribution outside China.

> Resistance rates are low compared to other surrounding countries, but the empirical use of quinolones is compromised.

Conflicting results from the IST 2 kit and standard broth microdilution were observed for CIP and AZI (i.e., most of the isolates routinely reported as nonsusceptible to these antibiotics were actually fully sensitive)

> We hypothesize that some hyperepidemic STs (e.g., ST4) spread worldwide via sexual intercourse.

Unfortunately, our study does not provide adequate clinical data to establish the extent of infection or colonization and the potential link with specific STs of *U. urealyticum* and *U. parvum* among our patients: Large combined microbiological and clinical studies should address these important aspects in the near future.