

Can alcohol intoxication goggles (Fatal Vision Goggles) be used to detect alcoholrelated impairment in simulated driving?

Danielle McCartney, Ben Desbrow & Chris Irwin School of Allied Health Science, Griffith University danielle.mccartney@griffithuni.edu.au

BACKGROUND Drink-driving in Australia

- · Alcohol intoxication implicated in ~34% of fatal motor vehicle crashes in Australia per year1
- Maximum legal BAC limits in Australia are 0.050%
- 12% of the population reported driving under the influence of alcohol²
- Researching the impact of alcohol on driving performance is important!

¹BITRE. (2011). Fatal Road Crashes in Australia in the 1990s and 2000s: Cras. 2AIHW. (2014). National Drug Strategy Household Survey detailed report 2013.

MENZIES

BACKGROUND

Fatal Vision Goggles (FVG)

- Image distorting equipment used to simulate alcohol-related impairment
- · FVG reduce favourable attitudes towards drinkdriving^{1,2}
- Two studies found that driving performance deteriorated when FVG were worn^{3,4}

Veell, J., Hugo, S., & Luttrell, G. (2004). The Effectiveness of Fatal Vision Goggies: Disentangling Experiential Versus Oricoker Effects. Journal of Alcohol and Drug Education, 48(3), 65-84. (2006). La 64 Hogs, 52(2005). Essenting the effects of Istal vision goggies on changing attitudes and behaviors related to drinking and driving. The Journal // Shanai, M. & Fata, A. B. (2014). Detection of intoicated drivens using online system identification of attening behavior. Intelligent Transportation System EEE Transactions on 16(6), 1789-170. "Remarching, G., Palamob, T., Martin, A., Head, D., George, R., & Cormissanes, R. L. (2016). The effects of testing on driving performance in a driving analaster. The influence of drive aga, Acceleration, 48(0), 165-169. mining the effects of fatal vision goggles on changing attitudes and behaviors related to drinking and driving. The Journal or

OBJECTIVES

Aim: To determine the validity of FVG to produce alcohol-related impairment of simulated driving

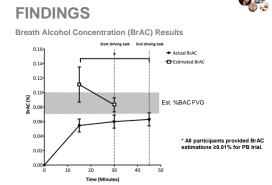
Driving task = 3 distinct scenarios (~5 minutes each):

1. Simple driving scenario teral control: 2. Complex driving scenario Standard deviation of lane position (SDLP) Number of lane crossings (LC) Longitudinal control: Distance headway (DH) Hazard perception driving scenario In hei Madi Hazard perception measurement: Choice reaction time (CRT)

Griffith UNIVERSITY MENZIES

METHODS

- 22 healthy males (23±3yrs)
- · placebo-controlled crossover design study
- A baseline level (BSL) simulated driving task and an experimental driving task, involving one of 5 treatments:


BrAC (AB)

1

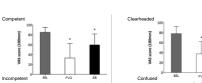
Urine specific gravity

FINDINGS

Driving Simulation Results

Measurement	∆ FVG trial (ES)	△ AB trial (ES)		
Simple scenario				
SDLP (cm)	No effect	No effect		
LC (n)	No effect	No effect		
Complex scenari	o			
SDLP (cm)	3.3 (0.48)	2.7 (0.33)		
LC (n)	2.2 (0.48)	2.5 (0.47)		
DH (m)	7.8 (0.47)	6.2 (0.35)		
Hazard perception	on scenario			
CRT (sec)	No effect	0.04 (0.26)		

 Δ = Difference compared to baseline driving performance ES = Cohen's d effect size


Significant change (p<0.05)

Non- significant change (p<0.10)

* Neither placebo treatment affected driving performance

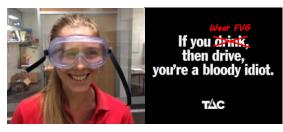
Griffith MENZIES

Similar trends were observed for ratings of alertness and coordination

* Neither placebo treatment affected mood ratings

CONCLUSION

Griffith MENZIES

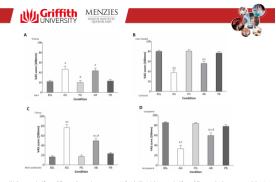

FVG appear to have some utility in replicating alcohol-related impairment on specific driving performance measurements AND appear to influence other elements of perception in a similar manner to alcohol intoxication

Potential applications:

- Drink-driving education programs
- Could replace the need to have participants consume alcohol in research studies prior to using a driving simulator

QUESTIONS?

Standard deviation of lane position (SDLP):



Verster, J. C., & Roth, T. (2014). Excursions out-of-lane versus standard deviation of lateral position as outcome measure of the on-the-road driving test. Human Psychopharmacology: Clinical and Experimental, 29(4), 322-329.

MENZIES HEALTH INSTITUTE OBITINSLAND	

	AG trial		PG trial		AB trial		PB trial		CL trial	
	BSL	AG	BSL	PG	BSL	AB	BSL	PB	BSL	CL
Simple Driving Sce	mario									
SDLP (cm)	21.7 (6.12)	22.6 (5.4)	19.7 (4.23)	21.8 (6.10)	23.2 (7.31)	22.4 (6.02)	22.1 (5.00)	21.1 (5.39)	21.5 (6.34)	20.9 (8.43)
LC (total number)	0.86 (2.14)	0.18 (0.59)	0.76 (2.84)	1.00 (3.07)	2.32 (5.60)	1.59 (3.19)	1.73 (3.62)	1.36 (2.85)	0.76 (1.95)	0.67 (1.93)
LP (-) (cm)	47.4 (20.4)	27.7 (16.5)*	47.4 (21.7)	46.8 (20.2)	49.1 (23.8)	51.1 (23.1)	47.1 (24.3)	50.4 (18.7)	46.7 (24.3)	22.8 (22.1)
SDSP (km/hr)	2.24 (0.57)	2.77 (0.96)*	2.41 (1.00)	2.45 (0.84)	2.54 (0.98)	2.37 (0.82)	2.21 (0.74)	2.16 (0.69)	2.20 (0.76)	3.56 (1.50)
SP (km/hr)	79.2 (1.70)	79.4 (2.90)	79.3 (1.64)	78.7 (1.61)	79.5 (1.63)	79.4 (1.60)	79.3 (1.13)	79.1 (1.01)	79.2 (1.10)	79.2 (4.00)
Complex Driving S	icenario									
SDLP (cm)	25.2 (6.67)	28.5 (7.00)*	25.1 (7.04)	26.5 (6.54)	26.0 (7.90)	28.7 (8.23)*	25.3 (7.90)	25.4 (7.45)	24.4 (6.33)	26.9 (8.90)
LC (total number)	1.18 (2.11)	3.36 (6.11)	1.77 (3.19)	2.09 (2.58)	2.00 (3.27)	4.45 (6.65)*	1.91 (2.35)	2.09 (2.80)	1.52 (3.03)	2.95 (6.55)
LP (+) (cm)	50.3 (13.6)	50.2 (17.8)	50.6 (12.3)	52.9 (13,5)	51.3 (16.9)	60.9 (18.4)*	52.5 (13.3)	52.5 (16.6)	52.0 (13.1)	41.0 (16.1)
DH (m)	55.3 (16.0)	47.5 (17.0)*	62.7 (21.0)	59.2 (14.3)	59.0 (17.6)	52.8 (17.6)	56.9 (19.5)	59.5 (20.1)	55.3 (16.0)	72.1 (38.5)
Min. DH (m)	34.4 (8.36)	30.0 (10.4)*	35.9 (9.55)	37.8 (7.75)	38.3 (7.15)	36.2 (7.79)	37.0 (7.43)	37.0 (7.83)	35.6 (6.64)	31.4 (9.35)
Hazard Perception	Driving Scen	ario								
CRT (sec)	0.89 (0.12)	0.89 (0.13)	0.87 (0.15)	0.87 (0.14)	0.88 (0.14)	0.92 (0.14)	0.87 (0.14)	0.86 (0.15)	0.88 (0.15)	1.09 (0.17)

'b' denotes a significant difference from active treatments (AG and AB); 'c' denotes a significant difference placebo treatments (PG and PB) and 'd' denotes a significant difference from the AG treatment. Values are mean ± SEM.