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Introduction 
 

The electrical power system normally operates in a balanced three-phase sinusoidal steady-state 

mode.  However, there are certain situations that can cause unbalanced operations.  The most 

severe of these would be a fault or short circuit.  Examples may include a tree in contact with a 

conductor, a lightning strike, or downed power line. 

 

In 1918, Dr. C. L. Fortescue wrote a paper entitled “Method of Symmetrical Coordinates 

Applied to the Solution of Polyphase Networks.”  In the paper Dr. Fortescue described how 

arbitrary unbalanced 3-phase voltages (or currents) could be transformed into 3 sets of balanced 

3-phase components, Fig I.1.  He called these components “symmetrical components.”  In the 

paper it is shown that unbalanced problems can be solved by the resolution of the currents and 

voltages into certain symmetrical relations.   

 

 
Fig I.1 

 

By the method of symmetrical coordinates, a set of unbalanced voltages (or currents) may be 

resolved into systems of balanced voltages (or currents) equal in number to the number of phases 

involved.  The symmetrical component method reduces the complexity in solving for electrical 

quantities during power system disturbances.  These sequence components are known as 

positive, negative and zero-sequence components, Fig I.2 

 

 
Fig I.2 

 

 



Symmetrical Components Page 2

The purpose of this paper is to explain symmetrical components and review complex algebra in 

order to manipulate the components.  Knowledge of symmetrical components is important in 

performing mathematical calculations and understanding system faults.  It is also valuable in 

analyzing faults and how they apply to relay operations. 

 

 

1. Complex Numbers 
 

The method of symmetrical components uses the commonly used mathematical solutions applied 

in ordinary alternating current problems.  A working knowledge of the fundamentals of algebra 

of complex numbers is essential.  Consequently this subject will be reviewed first. 

 

Any complex number, such as jba + , may be represented by a single point p, plotted on a 

Cartesian coordinates, in which a  is the abscissa on the x axis of real quantities and b the 

ordinate on the y axis of imaginary quantities.  This is illustrated in Fig. 1.1 

 

θ

 
Fig. 1.1 

 

Referring to Fig. 1.1, let r  represent the length of the line connecting the point p to the origin 

and θ  the angle measured from the x-axis to the line r.  It can be observed that  

 

 

θcos⋅= ra  (1.1) 

θsin⋅= rb  (1.2) 

 

 

2. Properties of Phasors 
 

A vector is a mathematical quantity that has both a magnitude and direction.  Many quantities in 

the power industry are vector quantities.  The term phasor is used within the steady state 

alternating linear system.  It is used to avoid confusion with spatial vectors: the angular position 

of the phasor represents position in time, not space.  In this document, phasors will be used to 

document various ac voltages, currents and impedances. 

 

A phasor quantity or phasor, provides information about not only the magnitude but also the 

direction or angle of the quantity.  When using a compass and giving directions to a house, from 

a given location, a distance and direction must be provided.  For example one could say that a 

house is 10 miles at an angle of 75 degrees (rotated in a clockwise direction from North) from 

where I am standing.  Just as we don’t say the other house is -10 miles away, the magnitude of 
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the phasor is always a positive, or rather the absolute value of the “length of the phasor.”  

Therefore giving directions in the opposite direction, one could say that a second house is 10 

miles at an angle of 255 degrees.  The quantity could be a potential, current, watts, etc. 

 

Phasors are written in polar form as  

 

θ∠= YY  (2.1) 

θθ sincos YjY +=  (2.2) 

 

where Y  is the phasor, Y is the amplitude, magnitude or absolute value and θ is the phase angle 

or argument.  Polar numbers are written with the magnitude followed by the ∠ symbol to 

indicate angle, followed by the phase angle expressed in degrees.  For example o
Z 90110∠= .  

This would be read as 110 at an angle of 90 degrees.  The rectangular form is easily produced by 

applying Eq. (2.2) 

 

The phasor can be represented graphically as we have demonstrated in Fig. 1.1, with the real 

components coinciding with the x axis. 

 

When multiplying two phasors it is best to have the phasor written in the polar form.  The 

magnitudes are multiplied together and the phase angles are added together.  Division, which is 

the inverse of multiplication, can be accomplished in a similar manner.  In division the 

magnitudes are divided and the phase angle in the denominator is subtracted from the phase 

angle in the numerator. 

 

Example 2.1 

Multiply BA⋅  where o
A 355∠= and o

B 453∠= .   

Solution 

( ) ( )oooo
BA 453535453355 +∠⋅=∠⋅∠=⋅  

o8015∠=  

 

Example 2.2 

Solve 
D

C
 where o

C 3515∠= and o
D 503∠= .   

Solution 

( )oo

o

o

D

C
5035

3

15

503

3515
−∠








=

∠

∠
=  

o155 −∠=  
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3. The j and a operator 
 

Recall the operator j.  In polar form,
o

j 901∠= .  Multiplying by j  has the effect of rotating a 

phasor o90  without affecting the magnitude. 

 

Table 3.1 - Properties of the vector j 

 

0.00.11 j+=  
o

j 901∠=  

118012 −=∠= o
j  

 

jj
o −=∠= 27013

 
o

j 901 −∠=−  

1−=j  

 

Example 3.1 

Compute jR  where o
R 6010∠= . 

Solution 

)6010(901 oo
jR ∠∠=  

o15010∠=  

Notice that multiplication by the j operator rotated the Phasor R  by o90 , but did not change the 

magnitude.  Refer to Fig. 3.1 

 

R

 
(a) R  

 

jR

R

 

(b) Rj  

Fig. 3.1. j effects 
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In a similar manner the a operator is defined as unit vector at an angle of 120
o
, written as 

o
a 1201∠= . The operator a

2
, is also a unit vector at an angle of 240

o
, written o

a 24012 ∠= .   

 

Example 3.2 

Compute aR  where o
R 6010∠= . 

Solution 

)6010(1201 oo
aR ∠∠=  

o18010∠=  

R

 
(a) A  

 

aR

R

 

(b) Rj  

Fig. 3.2. a effects 

 

Table 3.2 - Properties of the vector a 

 

0.00.11 j+=  
o

a 1201∠=  
o

a 24012 ∠=  
oo

a 0136013 ∠=∠=  

01 2 =++ aa  

12 −=+ aa  
o

a 6011 ∠=+  

o
a 6011 2 −∠=+  

32 jaa =−  

32 jaa −=−  

oa 3031 −∠=−  
oa 3031 2 ∠=−  
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4. The three-phase System and the relationship of the 3  
 

In a Wye connected system the voltage measured from line to line equals the square root 

of three, 3 , times the voltage from line to neutral.  See Fig. 4.1 and Eq. (4.1).  The line 

current equals the phase current, see Eq. (4.2) 

 

 
Fig. 4.1 

 

LNLL VV 3=  (4.1) 

Φ= IIL  (4.2) 

 

In a Delta connected system the voltage measured from line to line equals the phase 

voltage.  See Fig. 4.2 and Eq. (4.3).  The line current will equal the square root of three, 

3 ,  times the phase current, see Eq. (4.4) 

 

 
 

Fig. 4.2 

 

Φ=VVLL  (4.3) 

Φ= IIL 3  (4.4) 
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The power equation, for a three phase system, is  

 

LLLIVS 3=  (4.5a) 

ψcos3 LLLIVP =  (4.5b) 

ψsin3 LLLIVQ =  (4.5c) 

 

where S is the apparent power or complex power in volt-amperes (VA).  P is the real 

power in Watts (W, kW, MW).  Q is the reactive power in VARS (Vars, kVars, MVars). 

 

 

5. The per-unit System 
 
5.1 Introduction 
 

In many engineering situations it is useful to scale, or normalize, dimensioned quantities.  

This is commonly done in power system analysis.  The standard method used is referred 

to as the per-unit system.  Historically, this was done to simplify numerical calculations 

that were made by hand.  Although this advantage is eliminated by the calculator, other 

advantages remain.  

• Device parameters tend to fall into a relatively narrow range, making erroneous 

values conspicuous. 

• Using this method all quantities are expressed as ratios of some base value or 

values.  

• The per-unit equivalent impedance of any transformer is the same when referred 

to either the primary or the secondary side. 

• The per-unit impedance of a transformer in a three-phase system is the same 

regardless of the type of winding connections (wye-delta, delta-wye, wye-wye, or 

delta-delta). 

• The per-unit method is independent of voltage changes and phase shifts through 

transformers where the base voltages in the winding are proportional to the 

number of turns in the windings. 

• Manufactures usually specify the impedance of equipment in per-unit or percent 

on the base of its nameplate rating of power (usually kVA) and voltage (V or kV). 

 

The per-unit system is simply a scaling method.  The basic per-unit scaling equation is 

 

valuebase

valueactual
unitper

_

_
=−  (5.1) 

 

The base value always has the same units as the actual value, forcing the per-unit value to 

be dimensionless.  The base value is always a real number, whereas the actual value may 
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be complex.  The subscript pu  will indicate a per-unit value.  The subscript base will 

indicate a base value, and no subscript will indicate an actual value such as Amperes, 

Ohms, or Volts. 

 

Per-unit quantities are similar to percent quantities.  The ratio in percent is 100 times the 

ratio in per-unit.  For example, a voltage of 70kV on a base of 100kV would be 70% of 

the base voltage.  This is equal to 100 times the per unit value of 0.7 derived above. 

 

The first step in using per-unit is to select the base(s) for the system. 

 

Sbase
 
= power base, in VA.  Although in principle Sbase may be selected arbitrarily, in 

practice it is typically chosen to be 100 MVA. 

 

Vbase = voltage base in V.  Although in principle Vbase is also arbitrary, in practice Vbase is 

equal to the nominal line-to-line voltage.  The term nominal means the value at which the 

system was designed to operate under normal balanced conditions. 

 

From Eq. (4.5a) it follows that the base power equation for a three-phase system is: 

 

basebasebase IVS 33 =Φ  (5.2) 

 

Solving for current: 

 

base

base
V

S
I base

3

3Φ=   

 

Because S3Φbase can be written as kVA or MVA and voltage is usually expressed in kilo-

volts, or kV, current can be written as: 

 

amperes
kV

kVA
I

base

base
base

3
=  (5.3) 

Solving for base impedance: 

 

base

base

base

base
base

S

V

I

V
Z

2

==   

 

ohms
kVA

xkV
Z

base

base
base

10002

=  (5.4a) 

or 

ohms
MVA

kV
Z

base

base
base

2

=  (5.4b) 
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Given the base values, and the actual values: IZV = , then dividing by the base we are 

able to calculate the pu values 

 

pupupu

basebasebase

ZIV
ZI

IZ

V

V
=⇒=  

After the base values have been selected or calculated, then the per-unit impedance 

values for system components can be calculated using Eq. (5.4b) 

 

)(
)(

2
Ω⋅








=

Ω
= Z

kV

MVA

Z

Z
Z

base

base

base

pu  (5.5a) 

or 

)(
1000 2

Ω⋅








⋅
= Z

kV

kVA
Z

base

base
pu  (5.5b) 

 

It is also a common practice to express per-unit values as percentages (i.e. 1 pu = 100%).  

(Transformer impedances are typically given in % at the transformer MVA rating.)  The 

conversion is simple 

 

100

_ valuepercent
unitper =−  

 

Then Eq. (5.5a) can be written as 

 

( ) ( )
22 10

100
%

base

base

base

base

kV

ZkVA

kV

ZMVA
Z

Ω
=

Ω⋅
=  (5.6) 

 

It is frequently necessary, particularly for impedance values, to convert from one (old) 

base to another (new) base.  The conversion is accomplished by two successive 

application of Eq. (5.1), producing: 

 









=

new

base

old

baseold

pu

new

pu
Z

Z
ZZ  

 

Substituting for 
old

baseZ  and 
new

baseZ  and re-arranging the new impedance in per-unit equals: 

 
2

















=

new

base

old

base

old

base

new

baseold

pu

new

pu
kV

kV

kVA

kVA
ZZ  (5.7) 

 

In most cases the turns ratio of the transformer is equivalent to the system voltages, and 

the equipment rated voltages are the same as the system voltages.  This means that the 

voltage-squared ratio is unity.  Then Eq. (5.7) reduces to  
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=

old

base

new

baseold

pu

new

pu
MVA

MVA
ZZ  (5.8) 

 

We can quickly change from one impedance value in ohms, to another impedance value 

in ohms by dividing by the old base voltage and multiplying by the new base voltage in 

ohms.  This is shown in Eq. (5.9) 
2









⋅=

old

base

new

baseold

ohm

new

ohm
kV

kV
ZZ  (5.9) 

 

 

Example 5.1 

A system has Sbase = 100 MVA, calculate the base current for 

a) Vbase = 230 kV 

b) Vbase = 525 kV 

Then using this value, calculate the actual line current and phase voltage where

puI 95.4= , and puV 5.0=  at both 230 kV and 525 kV. 

 

Solution 

Using Eq. (5.3) amperes
kV

kVA
I

base

base
base

3
=  

a) AamperesIbase 251
2303

1001000
=

×

×
=  

 

b) AamperesIbase 0.110
5253

1001000
=

×

×
=  

 

From Eq. (5.1)  

basepuactual III ⋅=   (5.9) 

basepuactual VVV ⋅=  (5.10) 

 

At 230 kV 

c) ( ) ( ) AAI actual 124225195.4 =⋅=  

d) ( ) ( ) kVkVVactual 1152305.0 =⋅=  

 

At 525 kV 

e) ( ) ( ) AAI actual 5440.11095.4 =⋅=  

f) ( ) ( ) kVkVVactual 2635255.0 =⋅=  
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Example 5.2 

 

A 900 MVA 525/241.5 autotransformer has a nameplate impedance of 10.14% 

a) Determine the impedance in ohms, referenced to the 525 kV side. 

b) Determine the impedance in ohms, referenced to the 241.5 kV side 

Solution 

First convert from % to pu. 

1014.0
100

%
==

Z
Zpu  

 

Arranging Eq. (5.5a) and solving for Zactual gives 

 

base

base
pu

MVA

kV
ZZ

2

)( =Ω ; therefore 

a) 
900

525
1014.0

2

525 ×=kVZ  

Ω= 05.31  

 

b) 
900

5.241
1014.0

2

5.241 ×=kVZ  

Ω= 57.6  

 

A check can be made to see if the high-side impedance to the low-side impedance 

equals the turns ratio squared. 

 

726.4
57.6

05.31
=  726.4

5.241

525
2

=







 

 

 

5.1 Application of per-unit 
 

Appling this to relay settings, a practical example can be shown in calculation of the 

settings for a relay on a transmission line.  For distance relays a common setting for zone 

1 is 85% of the line impedance.  Zone 2 should be set not less than 125% of the line, with 

care to not over reach the zone 1 of the next line section.  If this does then zone 2 will 

need to be coordinated with the next line section zone 2.  

 

Referring to Fig. 5.1 the line impedance for the 161 kV line is o
Z 813.59 ∠=  ohms.  

Using the above criteria of 85% for zone 1 and 125 % for zone 2 the relays would be set 

at 

 

For zone 1 

)8131.59%(85)(1

o
Z ∠=Ω  
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o
Z 814.50)(1 ∠=Ω  

 

For zone 2  

)8131.59%(125)(2

o
Z ∠=Ω  

o
Z 811.74)(2 ∠=Ω  

 

 

 

 

 

 Fig 5.1 

 

 

For the relays on the 115 kV side of the transformer, the impedance of the transformer 

needs to be calculated. From example 5.2 we see that 

200

115
06796.0

2

115 ×=kVZ  

  Ω= 494.4  

 

Next the line impedance needs referenced to the 115 kV side of the transformer.  Using 

equation 5.9 
2









⋅=

old

base

new

baseold

ohm

new

ohm
kV

kV
ZZ  (5.9) 

 

Substituting, the line impedance equals 

ohmsZ kV

ohm 3.30
161

115
3.59

2

115 =







⋅=  

Adding this to the transformer, the impedance setting for the relays on the 115 kV side of 

the transformer is o
Z 828.34 ∠=  

 

Using the same criteria for zone 1 and zone 2 reach. 

 

For zone 1 

)828.34%(85)(1

o
Z ∠=Ω  

o
Z 816.29)(1 ∠=Ω  

 

For zone 2 

)818.34%(125)(2

o
Z ∠=Ω  

o
Z 815.43)(2 ∠=Ω  

 

Given these values, one can easily see that by ignoring the base values of the voltages the 

relay settings would not be adequate.  For example if the 161 kV settings were applied to 

Ia

xx

21

Ia

x
x

21

161 kV

115 kV

|Z| = 59.3 @ 81o ohms

Z% = 6.796

200MVA 161/115kV

|Z| = 34.8 @ 81
o
 ohms
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the 115 kV relays, zone 1 would over reach the remote terminal.  Conversely, if the 115 

kV settings were applied to the 161 kV relays zone 2 would not reach past the remote 

terminal and would thus not protect the full line. 

 

 

 
 

Fig. 5.2 

 

5.2 Calculating actual values from per-unit 
 

In the following sections we will discuss symmetrical faults.  The analysis of the faults 

uses the per-unit.  A impedance and voltage of the system is express in per-unit.  Then 

the fault current and fault voltage is solved and that value will be given in per unit.  Next 

we need to convert from per-unit to actual amps and volts by using the base values.  

Using the above equations it is easy to prove the following equations. 

 

The MVA for a three phase fault is given as  

PUZ

MVA
MVA

Fault

Base
Fault =  (5.10) 

Or 

PUZ
MVA

Fault

Fault

100
=  for a 100 MVABase (5.11 a) 

 

PUZ

I
I

Fault

Base

CurrentFault =_  (5.12) 

Or 

( ) ( )BaseFault

CurrentFault
kVPUZ

I
3

000,100
_

⋅
=  (5.12 a) 

 

5.3 Converting per-unit 
 

Before using the per-unit impedance of a transformer from a manufacture nameplate you 

must first convert it to a per-unit value of your system.  Typically the three-phase power 

base of 100MVA is used.  This is done by first converting the per unit impedance to an 

actual impedance (in ohms) at 525kV and then converting the actual impedance to a per-
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unit impedance on the new base.  Repeat, this time converting the per unit impedance to 

an actual impedance (in ohms) at 241.5kV and then converting the actual impedance to a 

per-unit impedance on the new base. 

 

In the problem 3 at the end of this document, the transformer nameplate data is for a ratio 

of 525/241.5kV or 2.174, whereas BPA’s ASPEN model uses nominal voltages of 525kV 

and 230kV for a ratio of 2.283.  Because BPA used a transformer ratio in ASPEN model 

that was different than the transformer nameplate values, we have a discrepancy in the 

per-unit impedance values that we obtained.  The problem arises because when a 

transformer is applied to the BPA system the transformer tap used will often be different 

than the one used in the nameplate calculations. 

 

What is the correct way to convert the per-unit impedance to the BPA base? 

 

Because the actual impedance of the transformer will vary when different taps are used, 

the most accurate way to model the impedance would be to actually measure the 

impedance with the transformer on the tap that will normally be used on the BPA system.  

This impedance would then be converted to a per-unit value on the BPA model base.  

Since this isn’t normally possible, a close approximation can be made by assuming that 

the per-unit impedance given on the nameplate will remain the same for the different tap 

positions of the transformer.  Find the transformer tap position that most closely matches 

the ratio of the ASPEN model (2.283 for a 525/230kV transformer), then convert the 

nameplate per-unit impedance to an actual value based on either the high- or low-side 

voltage given for that tap position. This actual impedance is then converted to a per-unit 

value on the BPA model base, using the high-side BPA voltage base if the high-side 

voltage was used for the conversion to actual impedance, or using the low-side BPA 

voltage base if the low-side voltage was used for the conversion to actual impedance.  

See problem 4. 

 

 

 
6. Sequence Networks 
 

Refer to the basic three-phase system as shown in Fig. 6.1.  There are four conductors to 

be considered: a, b, c and neutral n.   

 

anV bnV cnV

cI

bI

nI

aI

 
Fig. 6.1 
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The phase voltages, pV , for the balanced 3Φ case with a phase sequence abc are 

 
o

paan VVV 0∠==  (6.1a) 

o

pbbn VVV 120−∠==  (6.1b) 

o

ppccn VVVV 2401200 −∠=+∠==  (6.1c) 

 

The phase-phase voltages, LLV , are written as 

 
o

LLbaab VVVV 30∠=−=  (6.2a) 

o

LLcbbc VVVV 90−∠=−=  (6.2b) 

o

LLacca VVVV 150∠=−=  (6.2c) 

 

Equation (6.1) and (6.2) can be shown in phasor form in Fig. 6.2. 

 

Ψ

Ψ

Ψ

 
Fig. 6.2 

There are two balanced configurations of impedance connections within a power system.  

For the wye case, as shown in Fig. 4.1, and with an impedance connection of Ψ∠Z , the 

current can be calculated as 

 

ψ−∠== o

Y

P

Y

a
Z

V

Z

V
I 0  (6.3) 

 

Where Ψ is between o90− and + o90 .  For Ψ greater than zero degrees the load would be 

inductive ( aI lags aV ).  For ψ less than zero degrees the load would be capacitive ( aI

leads aV ).   
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The phase currents in the balanced three-phase case are 

 

ψ−∠= o

pa II 0  (6.4a) 

ψ−−∠= o

pb II 120  (6.4b) 

ψ−−∠= o

pc II 240  (6.4c) 

 

See Fig. 6.2. for the phasor representation of the currents. 

 

 

7. Symmetrical Components Systems 
 

The electrical power system operates in a balanced three-phase sinusoidal operation.  

When a tree contacts a line, a lightning bolt strikes a conductor or two conductors swing 

into each other we call this a fault, or a fault on the line.  When this occurs the system 

goes from a balanced condition to an unbalanced condition.  In order to properly set the 

protective relays, it is necessary to calculate currents and voltages in the system under 

such unbalanced operating conditions.  

 

In Dr. C. L. Fortescue’s paper he described how symmetrical components can transform 

an unbalanced condition into symmetrical components, compute the system response by 

straight forward circuit analysis on simple circuit models, and transform the results back 

into original phase variables.  When a short circuit fault occurs the result can be a set of 

unbalanced voltages and currents.  The theory of symmetrical components resolves any 

set of unbalanced voltages or currents into three sets of symmetrical balanced phasors.  

These are known as positive, negative and zero-sequence components.  Fig. 7.1 shows 

balanced and unbalanced systems. 

 

 
Fig. 7.1 

Consider the symmetrical system of phasors in Fig. 7.2.  Being balanced, the phasors 

have equal amplitudes and are displaced 120
o
 relative to each other.  By the definition of 

symmetrical components, 1bV  always lags 1aV  by a fixed angle of 120
o
 and always has 

the same magnitude as 1aV .  Similarly 1cV  leads 1aV  by 120
o
.  It follows then that 

 

11 aa VV =  (7.1a) 

1

2

11 )2401( aa

o

b VaVV =∠=  (7.1b) 
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111 )1201( aa

o

c aVVV =∠=  (7.1c) 

 

Where the subscript (1) designates the positive-sequence component.  The system of 

phasors is called positive-sequence because the order of the sequence of their maxima 

occur abc. 

 

Similarly, in the negative and zero-sequence components, we deduce 

 

22 aa VV =  (7.2a) 

222 )1201( aa

o

b aVVV =∠=  (7.2b) 

2

2

22 )2401( aa

o

c VaVV =∠=  (7.2c) 

 

00 aa VV =  (7.3a) 

00 ab VV =  (7.3b) 

00 ac VV =  (7.3c) 

 

Where the subscript (2) designates the negative-sequence component and subscript (0) 

designates zero-sequence components.  For the negative-sequence phasors the order of 

sequence of the maxima occur cba, which is opposite to that of the positive-sequence.  

The maxima of the instantaneous values for zero-sequence occur simultaneously. 

 

 
Fig.7.2 

 

In all three systems of the symmetrical components, the subscripts denote the 

components in the different phases.  The total voltage of any phase is then equal to the 

sum of the corresponding components of the different sequences in that phase.  It is now 

possible to write our symmetrical components in terms of three, namely, those referred to 

the a phase (refer to section 3 for a refresher on the a operator). 
 

210 aaaa VVVV ++=  (7.4a) 

210 bbbb VVVV ++=  (7.4b) 

210 cccc VVVV ++=  (7.4c) 
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We may further simplify the notation as follows; define 
 

00 aVV =  (7.5a) 

11 aVV =  (7.5b) 

22 aVV =  (7.5c) 

 

Substituting their equivalent values 
 

210 VVVVa ++=  (7.6a) 

21

2

0 aVVaVVb ++=  (7.6b) 

2

2

10 VaaVVVc ++=  (7.6c) 

 

These equations may be manipulated to solve for 0V , 1V , and 2V  in terms of aV , bV , and 

cV .   

 

( )
cba VVVV ++=

3

1
0  (7.7a) 

( )cba VaaVVV 2

1
3

1
++=  (7.7b) 

( )cba aVVaVV ++= 2

2
3

1
 (7.7c) 

 

It follows then that the phase currents are 
 

210 IIIIa ++=  (7.8a) 

21

2

0 aIIaIIb ++=  (7.8b) 

2

2

10 IaaIIIc ++=  (7.8c) 

 

The sequence currents are given by 
 

( )
cba IIII ++=

3

1
0  (7.9a) 

( )cba IaaIII 2

1
3

1
++=  (7.9b) 

( )cba aIIaII ++= 2

2
3

1
 (7.9c) 

 

The unbalanced system is therefore defined in terms of three balanced systems.  Eq. (7.6) 

may be used to convert phase voltages (or currents) to symmetrical component voltages 

(or currents) and vice versa [Eq. (7.7)]. 
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Example 7.1 

Given 
o

aV 535∠= , 
o

bV 1647 −∠= , 
o

cV 1057∠= , find the symmetrical 

components.  The phase components are shown in the phasor form in Fig. 7.3 

 

Va

Vb

Vc

Unbalanced condition

53
o

105
o

-164o

 
Fig. 7.3 

Solution 

Using Eq. (7.7a)  

Solve for the zero-sequence component: 

( )
cbaa VVVV ++=

3

1
0  

( )ooo 10571647535
3

1
∠+−∠+∠=  

o1225.3 ∠=  

 

From Eq. (7.3b) and (7.3c) 
o

bV 1225.30 ∠=  

o

cV 1225.30 ∠=  

 

Solve for the positive-sequence component: 

( )cbaa VaaVVV 2

1
3

1
++=  

( ) ( )( )ooooo 1057240116471201535
3

1
∠⋅∠+−∠⋅∠+∠=  

o100.5 −∠=  

 

From Eq. (7.1b) and (7.1c) 
o

bV 1300.51 −∠=  

o

cV 1100.51 ∠=  

 

Solve for the negative-sequence component: 

( )cbaa aVVaVV ++= 2

2
3

1
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( ) ( )( )ooooo 1057120116472401535
3

1
∠⋅∠+−∠⋅∠+∠=  

o929.1 ∠=  

 

From Eq. (7.2b) and (7.2c) 
o

bV 1489.12 −∠=  

o

cV 289.12 −∠=  

 

The sequence components can be shown in phasor form in Fig. 7.4. 

 

 
Fig. 7.4 

 

Using Eq. (7.6) the phase voltages can be reconstructed from the sequence components. 

 

 

Example 7.2 

Given 
o

V 1225.30 ∠= , 
o

V 100.51 −∠= , 
o

V 929.12 ∠= , find the phase sequence 

components.  Shown in the phasor form in Fig. 7.4 

Solution 

Using Eq. (7.6)  

 

Solve for the A-phase sequence component: 

 

210 VVVVa ++=  
ooo 929.1100.51225.3 ∠+−∠+∠=  

o530.5 ∠=  

 

Solve for the B-phase sequence component: 

 

21

2

0 aVVaVVb ++=  
ooo 1489.11300.51225.3 −∠+−∠+∠=  

o1640.7 −∠=  
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Solve for the C-phase sequence component: 

 

2

2

10 VaaVVVc ++=  
ooo 289.11100.51225.3 −∠+∠+∠=  

o1050.7 ∠=  

 

This returns the original values given in Example 5.2. 

 

This can be shown in phasor form in Fig. 7.5. 

 

 
Fig. 7.5 

 

Notice in Fig. 7.5 that by adding up the phasors from Fig. 7.4, that the original phase, Fig. 

7.3 quantities are reconstructed. 

 

Understanding symmetrical components can aid us in trouble shooting problems.  Some 

relays measure positive sequence power.  Modifying equation 7.7b for power, it follows 

then that the positive sequence power is 

 

( )cba PaaPPP 2

1
3

1
++=  (7.10) 

  

For a balanced system, at unity power factor, the phase sequence power shown in phasor 

form in Fig 7.6 
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Fig. 7.6 

From equation 7.10, the positive sequence power equals, ( )cba PaaPPP 2

1
3

1
++= .  Under 

a balanced system this simplifies to aPP =1 .  

 

 
Fig. 7.7 

 

This is an approximation of the average of the A-phase, B-phase and C-phase power.  See 

figure 7.7 

 

Let’s assume that the B and C phase voltages were swapped.  From a phasor diagram we 

see that the B-phase power now leads A-phase by 120 degrees, and C-phase power lags 

by 120 degrees.  Figure 7.8 

 

 
Fig. 7.8 
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From equation 7.10, the positive sequence power equals, ( )cba PaaPPP 2

1
3

1
++= .  

However, with the B-phase and C-phase voltage swapped, 01 =P . 

 
 

Fig. 7.9 

 

Figure 7.9 shows the phasor diagram 

 

 

 

 

8. Balanced and Unbalanced Fault analysis 
 

Let’s tie it together.  Symmetrical components are used extensively for fault study 

calculations.  In these calculations the positive, negative and zero-sequence impedance 

networks are either given by the manufacturer or are calculated by the user using base 

voltages and base power for their system.  Each of the sequence networks are then 

connected together in various ways to calculate fault currents and voltages depending 

upon the type of fault. 
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Given a system, represented in Fig. 8.1, we can construct general sequence equivalent 

circuits for the system.  Such circuits are indicated in Fig. 8.2.   

 

 
Fig. 8.1 

 

The positive-sequence impedance system data for this example in per-unit is shown in 

Fig. 8.2. 

 

o01∠
o01∠

 
Fig. 8.2 

 

Assuming the negative-sequence equals the positive-sequence, then the negative-

sequence is shown in Fig 8.3 

 

 
Fig. 8.3 

 

The zero-sequence impedance is greater than the positive and for our purpose is assumed 

to be three times greater.  Also because of the wye-delta transformer, zero-sequence from 

the generator will not pass through the transformer.  This will be shown in section 10.2. 

Zero-sequence is shown in Fig 8.4 
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Fig. 8.4 

 

The Thevenin equivalents for each circuit is reduced and shown in Fig. 8.5 

 

1I

1Vo01∠

2I

2V

0I

0V

 
Fig. 8.5 

 

Each of the individual sequence may be considered independently.  Since each of the 

sequence networks involves symmetrical currents, voltages and impedances in the three 

phases, each of the sequence networks may be solved by the single-phase method.  After 

converting the power system to the sequence networks, the next step is to determine the 

type of fault desired and the connection of the impedance sequence network for that fault.  

The network connections are listed in Table 8.1 

 

Table 8.1 - Network Connection 

• Three-phase fault - The positive-sequence impedance 

network is only used in three-phase faults. Fig. 8.3 

• Single Line-to-Ground fault - The positive, negative 

and zero-sequence impedance networks are connected 

in series. Fig. 8.5 

• Line-to-line fault - The positive and negative-sequence 

impedance networks are connected in parallel. Fig. 8.7 

• Double Line-to-Ground fault - All three impedance 

networks are connected in parallel. Fig. 8.9 
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The system shown in Fig. 8.1 and simplified to the sequence network in Fig. 8.5 and will 

be used throughout this section. 

 

 

Example 8.1 

Given puZ
o90199.00 ∠= , puZ

o90175.01 ∠= , 

puZ
o90175.02 ∠= , compute the fault current and 

voltages for a Three-phase fault.  Note that the 

sequence impedances are in per-unit.  This means that 

the solution for current and voltage will be in per-unit. 

Solution 

The sequence networks are interconnected, and shown 

 

Note that for a three phase fault, there are no negative 

or zero-sequence voltages. 

020 == VV  

020 == II  

The current 1I  is the voltage drop across 1Z  

1

1
1

Z

V
I =  

175.0

01
1

j
I

o∠
=  

71.5j−=  

 

The phase current is converted from the sequence 

value using Eq. (7.8). 

 

pujI
o

a 9071.5071.50 −∠=+−=  

puajaI
o

b 15071.5)0()71.5(0 2 ∠=+−+=  

puajaI
o

c 3071.5)0()71.5(0 2 ∠=+−+=  

 

Calculating the voltage drop, the sequence voltages are 

 

020 == VV  

111 01 IZV
o −∠=  

( ) 0.071.5175.011 =−−= jjV  

pu0.0=  

 

2I

+

-

2V

0I

+

-

0V

0Z

2Z

1I

+

-

1Vo01∠

1Z
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The phase voltages are converted from the sequence value using Eq. (7.6). 

 

puVa 0.00.00.00.0 =++=  

puaaVb 0.0)0.0()0.0(0.0 2 =++=  

puaaVc 0.0)0.0()0.0(0.0 2 =++=  

The per-unit value for the current and voltage 

would now be converted to actual values using 

Eq. (5.9) and Eq. (5.10) and knowing the base 

power and voltage for the given system.  See 

example 5.1 for a reference. 

 

The currents and voltages can be shown in phasor 

form. 

 

 

Example 8.2 

Given puZ
o90199.00 ∠= , puZ

o90175.01 ∠= , 

puZ
o90175.02 ∠= , compute the fault current and 

voltages for a Single line-to-ground fault.  Note that 

the sequence impedances are in per-unit.  This 

means that the results for current and voltage will 

be in per-unit. 

Solution 

The sequence networks are interconnected in series, 

as shown. 

 

Because the sequence currents are in series, and 

using ohms law. 

210 III ==  

)( 210

1
0

ZZZ

V
I

++
=  

 

)175.0175.0199.0(

01
0

jjj
I

o

++

∠
=  

 

puj 82.1−=  

 

The phase currents are converted from the sequence 

value using Eq. (7.8).  Substituting 210 III ==  into  

2I

+

-

2V

0I

+

-

0V

0Z

2Z

1I

+

-

1Vo01∠

1Z

Ic

Ia

Ib

VaVb

Vc
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Eq. (7.8) gives 

 

0000 3IIIIIa =++=  

000

2

0 =++= aIIaIIb   

00

2

00 =++= IaaIIIc  

Refer to Table 3.2: ( )01 2 =++ aa  

Note that 03IIa = .  This is the quantity that the relay “see’s” for a Single Line-to-

Ground fault. 

 

Substituting pujI 82.10 −=  

 

)82.1(303 jIIa −==  

puj 46.5−=  

 

Calculating the voltage drop, the sequence voltages are 

 

000 IZV −=  

111 IZVV −=  

222 IZV −=  

 

Substituting in the impedance and current from above 

 

362.0)82.1(199.00 −=−−= jjV  

( ) 681.082.1175.011 =−−= jjV  

( ) 319.082.1175.02 −=−−= jjV  

 

The phase voltages are converted from the sequence value using 

Eq. (7.6). 

 

0319.0681.0362.0 =−+−=aV  

puaaV
o

b 238022.1)319.0()681.0(362.0 2 ∠=−++−=  

puaaV
o

c 122022.1)319.0()681.0(362.0 2 ∠=−++−=  

 

The per-unit value for the current and voltage would now be converted to actual 

values using Eq. (5.9) and Eq. (5.10) and knowing the base power and voltage for 

the given system.  See example 5.1 for a reference. 

 

The currents and voltages can be shown in phasor form. 

 

Ia

Va

Vb

Vc
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Example 8.3 

Given puZ
o90199.00 ∠= , puZ

o90175.01 ∠= , 

puZ
o90175.02 ∠= , compute the fault current and 

voltages for a Line-to-Line fault.  Note that the 

sequence impedances are in per-unit.  This means that 

the solution for current and voltage will be in per-

unit. 

Solution 

The sequence networks are interconnected, as shown. 

 

Because the sequence currents sum to one node, it 

follows that 

21 II −=  

The current 1I  is the voltage drop across 1Z  in series 

with 2Z  

21

1
1

ZZ

V
I

+
=  

175.0175.0

01
1

jj
I

o

+

∠
=  

puj 86.2−=  

 

pujI 86.22 +=  

00 =I  

 

The phase current is converted from the sequence value using Eq. (7.8). 

 

pujjIa 086.286.20 =+−=  

pujajaIb 95.4)86.2()86.2(0 2 −=+−+=  

pujajaIc 95.4)86.2()86.2(0 2 =+−+=  

 

Calculating the voltage drop, and referring to Fig. 8.7, the sequence voltages are 

 

21 VV =  

222 IZV −=  

)86.2)(75.1( jj−=  

pu5.0=  

00 =V  

 

2I

+

-

2V

0I

+

-

0V

0Z

2Z

1I

+

-

1Vo01∠

1Z
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The phase voltages are converted from the sequence value using Eq. (7.6). 

 

puVa 0.15.05.00.0 =++=  

puaaVb 5.0)5.0()5.0(0.0 2 −=++=   

puaaVc 5.0)5.0()5.0(0.0 2 −=++=  

 

The per-unit value for the current and 

voltage would now be converted to actual 

values using Eq. (5.9) and Eq. (5.10) and 

knowing the base power and voltage for the 

given system.  See example 5.1 for a 

reference. 

 

The currents and voltages can be shown in phasor form. 

 

 

Example 8.4 

Given puZ
o90199.00 ∠= , puZ

o90175.01 ∠= , puZ
o90175.02 ∠= , compute the 

fault current and voltages for a Double Line-to-Ground fault.  Note that the 

sequence impedances are in per-unit.  This means that the solution for current and 

voltage will be in per-unit. 

Solution 

The sequence networks are interconnected, as 

shown in Fig. 8.9 

 

Because the sequence currents sum to one node, 

it follows that 

 

)( 201 III +−=  

 

The current 1I  is the voltage drop across 1Z  in 

series with the parallel combination of 0Z  and 

2Z  

 










+
+

=

20

20
1

1
1

ZZ

ZZ
Z

V
I  

 

Substituting in 
o

V 011 ∠= , and 0Z , 1Z , and 2Z , 

then solving for 1I  

2I

+

-

2V

0I

+

-

0V

0Z

2Z

1I

+

-

1Vo01∠

1Z

Ic

Ib
VaVb

Vc
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pujI 73.31 −=  

)(
)(

20

2
10

ZZ

Z
II

+
−=  

75.1j+=  

)(
)(

20

0
12

ZZ

Z
II

+
−=  

99.1j+=  

The phase current is converted from the sequence value using Eq. (7.8).   

 

pujjjIa 099.173.375.1 =+−=  

pujajajI
o

b 1.15260.5)99.1()73.3(75.1 2 ∠=+−+=  

pujajajI
o

c 9.2760.5)99.1()73.3(75.1 2 ∠=+−+=  

 

Calculating the voltage drop, and referring to Fig. 8.9, the sequence voltages are 

 

210 VVV ==  

000 IZV −=  

)199.0)(75.1( jj−=  

pu348.0=  

 

The phase voltages are converted from the sequence value using Eq. (7.6). 

 

puVa 044.1348.0348.0348.0 =++=  

puaaVb 0)348.0()348.0(348.0 2 =++=   

puaaVc 0)348.0()348.0(348.0 2 =++=  

Refer to Table 3.2: ( )01 2 =++ aa  

 

The per-unit value for the current and voltage would 

now be converted to actual values using Eq. (5.9) and 

Eq. (5.10) and knowing the base power and voltage 

for the given system.  See example 5.1 for a 

reference. 

 

The currents and voltages can be shown in phasor 

form. 

 

 

 

Ic
Ib

Va

IR



Symmetrical Components Page 32

9. Oscillograms and Phasors 
 

Attached are four faults that were inputted into a relay and then captured using the relay 

software.  

 

Three-phase fault.  Compare to example (8.1) 

 
Fig 9.1a 

   
 Fig 9.1b Fig 9.1c 
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Single Line-to-Ground fault.  Compare to example (8.2) 

 
Fig 9.2a 

 

   
 Fig 9.2b Fig 9.2c 
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Line-to-Line fault.  Compare to example (8.3) 

 
Fig 9.3a 

 

   
 Fig 9.3b Fig 9.3c 
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Double Line-to-Ground fault.  Compare to example (8.4) 

 
Fig 9.4a 

 

   
 Fig 9.4b Fig 9.4c 
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10. Addition Symmetrical Components considerations 
 

10.1 Symmetrical Components into a Relay 
 

Using a directional ground distance relay it will be demonstrated how sequential 

components are used in the line protection.  To determine the direction of a fault, a 

directional relay requires a reference against which the line current can be compared.  

This reference is known as the polarizing quantity.  Zero-sequence line current can be 

referenced to either zero-sequence current or zero-sequence voltage, or both may be used.  

The zero-sequence line current is obtained by summing the three-phase currents.  See 

Fig. 10.1 

Ir

Fig 10.1

Ia

Ib

Ic
Ia Ib Ic

 
 

From Eq. (7.9) 

 

( )
rcba IIIII ==++ 03  (10.1) 

 

This is known as the residual current or simply 03I . 

 

The zero-sequence voltage at or near the bus can be used for directional polarization.  

The polarizing zero-sequence voltage is obtained by adding an auxiliary potential 

transformer to the secondary voltage.  The auxiliary transformer is wired as a broken-

delta and the secondary inputted to the relay.  See Fig 10.2 
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03V

a
V

b
V

c
V

AV

BV

C
V

ΦA ΦB ΦC

 
 

 

From Eq. (7.7a) the zero-sequence voltage equals 

 

( )
cba VVVV ++=

3

1
0  (10.2a) 

( )
cba VVVV ++=03  (10.2a) 

 

 

Example 10.1 

Using the values obtained from example 8.2, calculate 03V . 

Solution 

0=aV  

puV
o

b 238022.1 ∠=  

puV
o

c 122022.1 ∠=  

 
oo

V 122022.1238022.103 0 ∠+∠+=  

pu
o18008.1 ∠=  

 

The zero-sequence voltage is pu
o18008.1 ∠ .  By connecting the value in the reverse 

gives 03V−  which equals pu
o008.1 ∠ .  Plotting this, we can show in phasor form what 

the relay see’s, Ia lagging 03V−  by the line angle.  In this case resistance is neglected, 

therefore Ia lags by 90
o
.  (see Fig 10.3). 
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Fig 10.3 

 
 
10.2 Symmetrical Components through a Transformer 
 

This section will look at current flow through a wye-delta transformer bank.  It will be 

shown in the next chapter that for faults that include ground that zero-sequence quantities 

will be generated.  It can be shown using symmetrical components that zero-sequence 

components cannot pass through delta-wye transformer banks.  If zero-sequence is 

flowing on the wye side, the currents will be reflected to the other side, but circulate 

within the delta.  Fig 10.4 The current on the left side is 

 

( )
baA II

n
I −=

1
 

 
Fig 10.4 
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From equation 7.2 we have 

 

210 AAAA IIII ++=  (10.3 a) 

210 BBBB IIII ++=  (10.3 b) 

 

Substituting on the right side of the equation 8.1 gives  

 

)( BA II − = )()()( 221100 BABABA IIIIII −+−+−  (10.4) 

 

The zero-sequence currents are in-phase, therefore equation 10.3 simplifies to  

 

)( BA II − = )()( 2211 BABA IIII −+−  (10.5) 

 

Where 
o

ABA III 303)( 111 ∠=−  and 
o

BBA III 303)( 222 −∠=−  

 

)303()303(
1

21

o

A

o

Aa II
n

I −∠+∠=  

)3030(
3

21

o

A

o

Aa II
n

I −∠+∠=  (10.6) 

In a balanced system where there is no negative or zero-sequence current then equation 

10.6 reduces to  

)30(
3 o

Aa I
n

I ∠=  (10.7) 

As can be seen the current will shift by 30
o 

when transferring through a transformer 

connected delta-wye.  The same can be prove when looking at the voltages. 

 

Now consider the connection in Fig 10.5. 

 

anI

bnI

cnI

 
Fig 10.5 

 

( )
caA IInI −=  
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Substituting equation 7.2 and reducing gives 

 

)( CA II − = )()()( 221100 CACACA IIIIII −+−+−  (10.8) 

)303()303( 21

o

A

o

Aa IInI ∠+−∠=  

)3030(3 21

o

A

o

Aa IInI ∠+−∠=  (10.9) 

 

As seen from the prior example equation 10.9 will reduce to 

 

)30(3 o

Aa InI −∠=  

 

if there is no negative or zero-sequence current, which is the case for a balanced system. 

 

By inspection of the equations above for ANSI standard connected delta-wye transformer 

banks if the positive-sequence current on one side leads the positive current on the other 

side by 30
o
, the negative-sequence current correspondingly will lag by 30

o
.  Similarly if 

the positive-sequence current lags in passing through the bank, the negative-sequence 

quantities will lead 30
o
. 

 

The direction of the phase shifts between the delta-connected winding and the wye-

connected winding depends on the winding connections of the transformer. 

 

The winding configurations of a transformer will determine whether or not zero-sequence 

currents can be transformed between windings.  Because zero-sequence currents do not 

add up to zero at a neutral point, they cannot flow in a neutral without a neutral conductor 

or a ground connection.  If the neutral has a neutral conductor or if it is grounded, the 

zero-sequence currents from the phases will add together to equal 3I0 at the neutral point 

and then flow through the neutral conductor or ground to make a complete path. 

 

10.3 Sequence Impedances: Transformer 
 

1. Transformers with at least two grounded wye windings 

 

When a transformer has at least two grounded-wye windings, zero-sequence 

current can be transformed between the grounded-wye windings.  The I0 currents 

will add up to 3I0 in the neutral and return through ground or the neutral 

conductor.  The I0 currents will be transformed into the secondary windings and 

flow in the secondary circuit.  Any impedance between the transformer neutral 

points and ground must be represented in the zero-sequence network as three 

times its value to correctly account for the zero-sequence voltage drop across it. 
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Below on the left is a three-phase diagram of a grounded-wye, grounded-wye 

transformer connection with its zero-sequence network model on the right.  

Notice the resistance in the neutral of the secondary winding is modeled by 3R in 

the zero-sequence network model. 

 

 

 

 

2. Transformers with a grounded-wye winding and a delta winding 

 

When a transformer has a grounded-wye winding and a delta winding, zero-

sequence currents will be able to flow through the grounded-wye winding of the 

transformer.  The zero-sequence currents will be transformed into the delta 

winding where they will circulate in the delta without leaving the terminals of the 

transformer.  Because the zero-sequence current in each phase of the delta 

winding is equal and in phase, current does not need to enter or exit the delta 

winding. Below on the left is a three-phase diagram of a grounded-wye-delta 

transformer connection with its zero-sequence network model on the right.   

 

3. Autotransformers with a grounded neutral 

 

Autotransformers can transform zero-sequence currents between the primary and 

secondary windings if the neutral is grounded.  Zero-sequence current will flow 

through both windings and the neutral ground connection. Below on the left is a 

three-phase diagram of a grounded neutral autotransformer with its zero-sequence 

network model on the right.   

 

Reference Bus

Z0 3RP S

I0

I0

I0

3I0
3I0

R

I0

I0

I0

P S
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4. Autotransformers with a delta tertiary 

 

If an autotransformer has a delta tertiary, zero-sequence current can flow through 

either the primary or secondary winding even if the other winding is open 

circuited in the same manner that zero-sequence current can flow in a grounded-

wye-delta transformer.  If the ground is removed from the neutral, zero-sequence 

current can still flow between the primary and secondary windings, although there 

will not be any transformation of currents between the primary and secondary 

windings—only between the partial winding between the primary and secondary 

terminals and the delta tertiary.  This is not a normal condition though, so it will 

not be analyzed here. 

 

Note that when modeling three-winding transformers the impedance needs to be 

broken into the impedance of the individual windings. 
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5. Other transformers 

 

Other transformer configurations, such as ungrounded wye-ungrounded wye, 

grounded wye-ungrounded wye, ungrounded wye-delta, and delta-delta will not 

allow zero-sequence currents to flow and will have an open path in the zero-

sequence network model.  Some of these configurations are shown below with 

their zero-sequence network models. 

 

 

 

 

 

 

 

 

 

In the preceding transformer connection diagrams the values of I0 at the terminals of the 

primary and secondary windings will be equal on a per-unit basis.  They will also have 

the same per-unit values within the wye and delta windings; however, the per-unit values 

of current within the windings of an autotransformer are somewhat more difficult to 

determine because part of the winding carries both primary and secondary currents.  If 

the magnitude of current within the winding of an autotransformer needs to be known, it 

can be determined by equating the ampere turns of the primary winding to those of the 

secondary winding and solving.  If a tertiary is involved, it will need to be included in the 

equation also. 
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Magnitude of transformer zero-sequence impedance 

 

The zero-sequence impedance of a single-phase transformer is equal to the positive-

sequence impedance.  When three single-phase units are connected as a three-phase unit 

in a configuration that will transform zero-sequence currents (grounded wye-grounded 

wye, grounded wye-delta, etc.), the zero-sequence impedance of the three-phase unit will 

normally be equal to the positive-sequence impedance. 

 

In transformers built as three-phase units, i.e. with a three-phase core, in a configuration 

capable of transforming zero-sequence currents, the zero-sequence impedance will be the 

same as the positive-sequence impedance if the transformer core is of the shell type.  If 

the core is of the core type, the zero-sequence impedance will be different than the 

positive-sequence impedance.  This is because the zero-sequence excitation flux does not 

sum to zero where the three legs of the core come together and is forced to travel outside 

of the iron core, through the oil or the transformer tank where the magnetic permeability 

is much less than the iron core.  This results in a low impedance (high conductance) in 

the magnetizing branch of the transformer model.  The larger zero-sequence magnetizing 

current results in a lower apparent zero-sequence impedance.  Using a lower value of 

zero-sequence impedance in the transformer zero-sequence model is sufficient for most 

fault studies, but to obtain a highly accurate zero-sequence model of a three-phase core-

form transformer, the magnetizing branch cannot be neglected.  

 

Magnitude of transformer zero-sequence impedance 

Typical banks are shown in the reference section of this document. The winding labels 

are H, M, and L, or high, medium and low-voltage windings respectively. The L winding 

is also called the tertiary winding.  The manufacture provides the leakage impedances 

between the windings as ZHM, ZHL, AND ZML, usually on different kVA or MVA ratings 

at the rated winding voltages. 

 

The equivalent wye leakage impedances are obtained from the following equations: 

)(
2

1
MLHLHMH ZZZZ −+=  

)(
2

1
HLMLHMM ZZZZ −+=  

)(
2

1
MMMLHLH ZZZZ −+=  

As a check, MHHM ZZZ += , etc. 

 

It is possible for one of the values to be negative.  The junction point of the wye has no 

physical significance.  The wye is a mathematical equivalent valid for current and voltage 

calculations at the transformer terminals.  
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11. System Modeling  
 

11.1 System Modeling: Transmission Lines  
 
Transmission lines are represented on a one-line diagram as a simple line connecting 

busses or other circuit elements such as generators, transformers etc. 

 

Transmission lines are also represented by a simple line on impedance diagrams, but the 

diagram will include the impedance of the line, in either ohm or per-unit values.  

Sometimes the resistive element of the impedance is omitted because it is small 

compared to the reactive element. 

 

Here is an example of how a transmission line would be represented on an impedance 

diagram with impedances shown in ohms: 

 

 
 

In a balanced three-phase system the impedance of the lines and loads are the same, and 

the source voltages are equal in magnitude.  We can calculate the single-phase current, 

but must take into account the voltage drop across the mutual impedance caused by the 

other phase currents.  From Fig 11.1, the voltage drop in A-phase is 

 
Zs

Zs

Zs

Zm

Zm

Zm

AΦ

BΦ

CΦ

 
Fig 11.1 

 

CmBmASa IZIZIZV ++=  (11.1a) 

For the case of a balanced three-phase current ACB III −=+ )( .  Therefore: 

 

( )
AmSa IZZV −=  (11.1b) 

 

Dividing by IA  shows  the positive-sequence impedance of the line equals the self 

impedance minus the mutual impedance. 

 

( )mS

A

A
a ZZ

I

V
Z −==

0

0
1  (11.2) 

 

The negative-sequence current encounters a negative-sequence impedance which is equal 

to the positive-sequence impedance 
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( )mS

A

A
a ZZ

I

V
Z −==2  (11.3) 

 

For the zero-sequence impedance, because Ia0, Ib0 and Ic0 are in phase with each other,  

 

000 CBA III ==  

 

then zero-sequence voltage drop is given in equation 11.4 

 

( ) 000000 AmmASCmBmASa IZZIZIZIZIZV ++=++=  (11.4a) 

( ) 00 2 AmSa IZZV +=  (11.4b) 

 

Dividing each side by IA0 give the zero-sequence impedance: 

 

( )mS

A

A
a ZZ

I

V
Z 2

0

0
0 +==  (11.5) 

The result gives the zero-sequence impedance as function of the self and mutual 

impedance of the line.  The zero-sequence impedance is always larger than the positive-

sequence because we are adding two times the mutual impedance to the self impedance, 

instead of subtracting the mutual impedance from the self impedance. 
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11.2 System Modeling: Subtransient, Transient, and Synchronous Reactance of 
Synchronous Generators  
 

A synchronous generator is modeled by an internal voltage source in series with an 

internal impedance. 

Below is a typical one-line diagram symbol for a generator. 

 

 
 

The circle represents the internal voltage source. The symbol to the left of the circle 

indicates that the three phases of the generator are wye-connected and grounded through 

a reactance. The symbol for a synchronous motor is the same as a synchronous generator. 

 

 

A typical impedance diagram representation of a synchronous generator is shown in Fig. 

11.2. 

Xg Rg

Vt
Eg

+

-

 
Fig. 11.2 

 

When modeling the impedance of a synchronous generator (or motor), the resistive 

component is usually omitted because it is small compared to the reactive component. 

 

When a fault is applied to a power system supplied by a synchronous generator, the initial 

current supplied by the generator will start at a larger value, and over a period of several 

cycles it will decrease from its initial value to a steady state value. 

 

The initial value of current is called the subtransient current or the initial symmetrical rms 

current. Subtransient current decreases rapidly during the first few cycles after a fault is 

initiated, but its value is defined as the maximum value that occurs at fault inception. 

 

After the first few cycles of subtransient current, the current will continue to decrease for 

several cycles, but at a slower rate.  This current is called the transient current.  Although, 

like the subtransient current, it is continually changing, the transient current is defined as 

its maximum value, which occurs after the first few cycles of subtransient current. 

 

After several cycles of transient current, the current will reach a final steady state value.  

This is called the steady state current or the synchronous current.  
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The reason why the current supplied by the synchronous generator is changing after a 

fault is because the increased current through the armature of the generator creates a flux 

that counteracts the flux produced by the rotor.  This results in a reduced flux through the 

armature and therefore a reduced generated voltage.  However, because the decrease in 

flux takes time, the generator voltage will be initially higher and decrease over time. 

 

We account for the changing generator voltage in our model by using different values of 

reactance in series with the internal generator voltage. 

 

We use three values of reactance to model the generator during the period after fault 

inception: the subtransient reactance (Xd’’) is used during the initial few cycles; the 

transient reactance (Xd’) is used for the period following the initial few cycles until a 

steady state value is reached; the synchronous reactance (Xd) is used for the steady state 

period. 

 

The impedance diagrams for a synchronous generator (or motor) during the subtransient, 

transient, and synchronous periods are shown in Fig. 11.3. 

 

     
Fig. 11.3 

 

The reactance of synchronous motors are the same as for synchronous generators.  If the 

line to a synchronous motor develops a three-phase fault, the motor will no longer receive 

electrical energy from the system, but its field remains energized and the inertia of its 

rotor and connected load will keep the rotor turning for some time.  The motor is then 

acting like a generator and contributes current to the fault 
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11.3 System Modeling: Transformers 
 
Transformers are represented in one-line diagrams by several symbols.  Below 
are some typical ones. 
 
 

      
 
The first is a two-winding transformer connected delta- grounded wye, and the 
second is a three-winding transformer connected grounded wye-delta-grounded 
wye. 
 
An impedance model of a practical two-winding transformer is shown in Fig. 11.4. 
 

 
Fig. 11.4 

 
In the model, a:1 represents the winding ratio of the ideal transformer shown by 
the two coupled coils, BL in parallel with G represents the magnetizing 
susceptance and conductance which make up the magnetizing branch, IE 
represents the excitation current, r1 and x1 represent the leakage impedance of 
winding 1,r2 and x2 represent the leakage impedance of winding 2, V1 and I1 
represents the primary voltage and current respectively, and V2 and I2 represent 
the secondary voltage and current respectively. 
Because normal fault and load currents are very much larger than the 
magnetizing current, IE, we can omit the magnetizing branch from our model.  
We can also omit the ideal transformer if we refer the leakage impedances to 
either the primary- or secondary-side of the transformer.  The leakage 
impedance of one side of the transformer can be referred to the other side of the 
transformer by multiplying it by the square of the turns ratio.  Below is the 
simplified impedance diagram with the magnetizing branch removed and the 
leakage impedance of the secondary winding referred to the primary side of the 
transformer. 
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Our impedance model can be further simplified by letting 
2211 rarR +=  

2211 xaxX +=  

 
 

When using this simplified model, any impedances and voltages connected to the 

secondary side of the circuit must now be referred to the primary side. 

 

As an example, the following transformer model will be converted to the simplified 

impedance model. The magnetizing branch and the leakage resistances have been omitted 

to simplify the problem. 

 

 
 

The secondary-side impedance is multiplied by the square of the turns ratio before being 

transferred to the primary side. 

 j6.0 * 8.332 = j416.3Ω 
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This is added to the high side to get an impedance of j50Ω + j416.3Ω = j466.3Ω 

 

The simplified model is shown in Fig. 11.5 

 
Fig. 11.5 

 

11.4 Some additional points – DC Offset 
 
In a transmission network, the sudden occurrence of a short circuit will result in a 

sinusoidal current that is initially larger and decreases due to the changing air gap flux in 

the synchronous generators.  We’ve seen that this is modeled by subtransient, transient, 

and synchronous reactance in our generator model. In a circuit containing resistance and 

inductance (RL circuit), such as in a transmission network, the sudden occurrence of a 

short circuit will also result in DC offset in the current that occurs after a fault is applied.  

Consider the RL circuit below: 

 

 
 

 

 

 

 

If the switch is closed at time t=0, the voltage around the circuit is 

Vmaxsin(ωt+φ) = Ri + Ldi/dt 

 

Solving this differential equation for the instantaneous current, i, gives 

i = Vmax [sin(ωt+φ-θ) – e-Rt/Lsin(φ-θ)] / │Z│ 

 

Where │Z│= √(R2 + (ωL)2   and   θ = tan-1(ωL/R) 
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The important thing to note from the solution is that there is a sinusoidal component that 

represents the steady-state solution for the current (Vmax sin(ωt+φ-θ) / │Z│) and a 

exponentially decaying component (-Vmax e-Rt/Lsin(φ-θ) / │Z│). 

 

Some points to note about the exponentially decaying—or DC offset—component: 

 

The initial value of the DC offset is determined by what point in the cycle the voltage 

waveform is at when the fault occurs (the value of φ) and will range from 0 up to the 

value of the steady state component. 

 

The dc component will decrease with a time constant of L/R.  The larger the ratio of 

inductance to resistance in the circuit, the larger the time constant, and the slower the dc 

component will decay. 

 

Three time constants after the switch is closed, the dc offset will have decayed to 5% of 

its initial value. 

 

DC offset is an important consideration in sizing breakers. 

 

Most modern microprocessor-based relays are immune to DC offset because after the 

analog signals are converted to digital signals, they can be mathematically filtered to 

remove the DC component.  Therefore the DC component doesn’t need to be considered 

in the relay settings.  

 

Some electromechanical relays are immune to DC offset, and some aren’t.  Clapper and 

plunger type units are generally not immune, and DC offset will have to be allowed for in 

the relay settings (one guideline is to set pickup at 160% of the desired ac pickup 

current).  Cylinder type units, used in distance relays, are immune to DC offset. 

 

The different values of the AC fault current should be considered in the relay settings.  

The subtransient fault current should be used in setting instantaneous current elements, 

whereas the synchronous fault current should be used in current elements with long time 

delays. 
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Problems 
Problem 1 

 

BPA’s system model uses a three-phase power base of 100MVA.  The line-to-line 

voltage base is 525kV for the 500 system, 230kV for the 230 system, and 115kV for the 

115 system. 

 

a) An undervoltage relay on the 115 system is set to pick up at 0.85 pu (per unit) of the 

phase-to-ground voltage.  What is the phase-to-ground voltage that the undervoltage relay 

will pick up at? 

 

b) A three-phase fault on the 500 system results in a fault current of 2750A.  What is the 

per unit value of this current? 

 

c) What is the base impedance for the 500 system? 

 

d) What is the base impedance for the 230 system? 

 

e) What is the base impedance for the 115 system? 

 

 

Problem 2 

 

From our example 5.2, the percent impedance of a 525/241.5kV autotransformer is 

10.14% based on its nameplate value of 900MVA.  Suppose we need to model this 

transformer in BPA’s ASPEN model which uses a 100MVA power base.  What would 

the per-unit impedance be? 

 

 

Problem 3 

 

From our example in 5.2, convert the per-unit impedance to a per-unit value in a three-

phase power base of 100MVA.   

a) First convert the per unit impedance to an actual impedance (in ohms) at 525kV and 

then convert the actual impedance to a per-unit impedance on the new base. 

b) Repeat, this time converting the per unit impedance to an actual impedance (in ohms) 

at 241.5kV and then converting the actual impedance to a per-unit impedance on the new 

base 

 

 

Problem 4 

 

Convert the per-unit impedance of the transformer in the example to a per-unit value in 

the BPA model with a three-phase power base of 100MVA by first converting the per 

unit impedance to an actual impedance (in ohms) at 230 kV and then converting the 

actual impedance to a per-unit impedance on the new base. 
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Problem 5 

 

V2

j6.0O

8.33:1

V1 = 66.4kV @ 0°

I2I1

j50.0O

50O

 
Using the transformer model convert from ohms to per-unit.   

The voltage base for the primary side will be 115kV, and the voltage base for the 

secondary side will be 13.8kV.  The power base for both sides is 100MVA.  

 

 

Problem 6 

 

Below is a one line diagram of a partial power system. 

The two generators are identical, each rated 13.8kV and 50MVA with a subtransient 

reactance of Xd” = 15%.  The two generators are tied to a common bus which is 

connected to a transmission line with a delta-grounded wye transformer rated at 

150MVA, 13.8kV/115kV and an impedance of 9.7%.  The transmission line is 30 miles 

long and has an impedance of 5.43 + j22.5Ω.  At the end of the transmission line is a 

grounded wye-grounded wye transformer, rated 225MVA, 115kV/230kV with an 

impedance of 7.4% that connects the line to a 230kV bus.  The remaining power system 

connected to the 230kV bus is not shown. 

 

From the above information, draw the impedance diagram with impedances shown in 

their per-unit values.  Use voltage bases of 13.8kV, 115kV, and 230kV for the 

corresponding parts of the system, and use a power base of 100MVA for the whole 

system. 
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Problem 7 

 

From the impedance diagram, determine the per-unit and ampere values of subtransient 

current in each generator and at the fault for a three-phase fault applied on the 230kV bus 

with both generators operating at 1.0pu voltage.  

 

The generators can be combined into their Thevenin equivalent as shown below. 

 

1.0pu

+

-

j0.15

j0.0647 j0.1701 j0.03289

3-phase
fault

0.04106

IF

 
 

 

Problem 8 

 

From the one line diagram of a partial power system that we used in problem 6. 

 

From the above information, we drew the positive-sequence impedance diagram using 

subtransient impedances for the generators and with impedances shown in their per-unit 

values.  Normally the positive-sequence network is drawn with the reference bus (which 

is the neutral point) shown at the top instead of the bottom.   

 

The negative-sequence reactance of the generators is equal to their positive-sequence 

subtransient reactance.  Draw the positive and negative-sequence networks for the power 

system with impedances shown in their per-unit values. 

 

 

 

Problem 9 

 

Each generator has a zero-sequence reactance of 5% and is grounded through a reactance 

of 2Ω.  The transmission line has a zero-sequence impedance of 12.9 + j75.9Ω.  The 

grounded wye-grounded wye transformer has a zero-sequence reactance of 4.8%. 

Draw the zero-sequence impedance diagram. 
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Problem 10 

 

From the book Protective Relaying – Principles and Applications; Fourth edition, by J. 

Lewis Blackburn and Thomas J. Domin. Problem 3.4 

 

The power transformer connections shown in the figure below are nonstandard and quite 

unusual with today’s standardization. However, this connection provides an excellent 

exercise in understanding phasors, polarity, and directional sensing relay connections. 

Connect the three-directional phase relays A, B, C to line-side current transformers 

(CT’s) and bus-side voltage transformers (VTs) for proper operation for phase faults out 

on the line. Use the 90
o
–60

o 
connection. Each directional relay has maximum torque 

when the applied current leads the applied voltage by 30
o
. The auxiliary VTs should be 

connected to provide the relays with equivalent line-side voltages. 

 

 
 

The currents are connected so that when Ia, Ib, and Ic are flowing in the trip 
direction indicated by the “trip direction” arrow, the secondary currents flow 
through the directional units from the polarity of the relay. 
 
The auxiliary transformer is wired such that the secondary voltage reflects the 

primary voltage. 

Delta–Wye on the primary, is reflected Delta–Wye on the secondary. 
 
With the trip direction of the currents established in the directional unit current 
coils, the voltages Vbc, on unit A, Vca on unit B, and Vab on unit C must be 
connected from polarity to non-polarity on the directional unit voltage coils.
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Solutions 
Problem 1 

 

a) V BL-G = V BL-L / √3 

V BL-G = 115kV / √3 = 66.4kV 

 

V = 0.85*66.4kV 

V = 56.4kV 

 

b) IB = PB3Φ / √3*VBL-L 

IB = 100x10
6
 / √3*525x10

3
 

IB = 110.0 A 

 

IPU = IA / IB 

IPU = 2750 A / 110 A 

IPU = 25.0 pu  

 

c) ZB = VBL-L2 / PB3Φ 

ZB = (525x10
3
)

2
 / 100x10

6
 

ZB = 2756.25Ω 

 

 

d) ZB = VBL-L2 / PB3Φ 

ZB = (230x10
3
)

2
 / 100x10

6
 

ZB = 529.0Ω 

 

e) ZB = VBL-L2 / PB3Φ 

ZB = (115x10
3
)

2
/ 100x10

6
 

ZB = 132.25Ω 

 

 

 

Problem 2 

 

Zpu new = Zpu old *(VBL-L old / VBL-L new)
2
 * (PB3Φ new / PB3Φ old) 

 

Zpu old = 10.14 / 100 = 0.1014 

VBL-L old = 525kV,      PB3Φ old = 900MVA 

VBL-L new = 525kV,     PB3Φ new =100MVA 

 

Zpu new = 0.1014 *(525kV / 525kV)
2
 * (100MVA / 900MVA) 

Zpu new = 0.1014 *1* (100 / 900) 

Zpu new = 0.01127 pu 
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Problem 3 

 

ZPU = ZA / ZB 

ZA = ZPU * ZB 

 

ZB = VBL-L 
2
 / P B3Φ 

 

a) Using the high-side voltage: 

Z B old = 525,000
2
 / 900x10

6
 

Z B old = 306.25Ω 

 

ZA = 0.1014 * 306.25 

ZA = 31.05Ω 

 

Converting to the 100MVA base: 

ZB new = V BL-L new 
2
 / PB3Φ new 

ZB new = 525,000
2
 / 100x10

6
 

ZB new = 2756.25Ω 

 

ZPU new = ZA / ZB new 

ZPU new = 31.05Ω / 2756.25Ω 

ZPU new = 0.01127 pu 

 

b) Using the low-side voltage: 

ZB old = 241,500
2
 / 900x10

6
 

ZB old = 64.80Ω 

 

ZA = 0.1014 * 64.80 

ZA = 6.57Ω 

 

Converting to the 100MVA base: 

ZB new = V BL-L new 
2
 / P B3Φ new 

ZB new = 230,000
2
 / 100x10

6
 

ZB new = 529.0Ω 

 

ZPU new = ZA / ZB new 

ZPU new = 6.57Ω / 529.0Ω 

ZPU new = 0.01242 pu 
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Problem 4 

 

Hint: Repeat problem 3 assuming the transformer has a tap with a ratio of 525 /230 kV 

and using the low side voltage. 

 

a) Using the low-side voltage: 

ZB old = 230,000
2
 / 900x10

6
 

ZB old = 58.780Ω 

 

ZA = 0.1014 * 58.78 

ZA = 5.96Ω 

 

Converting to the 100MVA base: 

ZB new = V BL-L new 
2
 / P B3Φ new 

ZB new = 230,000
2
 / 100x10

6
 

ZB new = 529.0Ω 

 

ZPU new = ZA / ZB new 

ZPU new = 5.96Ω / 529.0Ω 

ZPU new = 0.01127 pu 
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Problem 5 

 

Answer: 

 

The base impedance of the secondary side is ZB = V BL-L2 / P B3Φ 

 

ZB = (13.8*10
3
)2 / 100*10

6
 

ZB = 1.904Ω 

 

The per-unit impedance of the secondary leakage reactance is  

X2 = j6.0 / 1.094 = j3.151 pu 

The per-unit value of the load resistance is RL = 50 / 1.904 = 26.26 pu 

 

 

The base impedance of the primary side is ZB = V BL-L2 / P B3Φ 

 

ZB = (115*10
3
)2 / 100*10

6
 

ZB = 132.25Ω 

 

The per-unit impedance of the primary leakage reactance is  

X1 = j50.0 / 132.25 = j0.3781 pu 

 

The total per-unit impedance of our model can be obtained by simply adding together the 

per-unit values of the primary and secondary impedances. 

 

X = X1 + X2 = j0.3781 + j3.151 = j3.529 pu 
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Problem 6 

 

Answer: 

 

Converting the impedances to per-unit on a 100MVA base using  

Zpu new = Zpu old *(VBL-L old / VBL-L new)
2
 * (PB3Φ new / PB3Φ old) 

 

Each generator subtransient reactance is Xd” = j0.15 * (13.8kV / 13.8kV)
2
 * (100MVA / 

50MVA) 

Xd” = j0.30 pu 

 

The 13.8kV / 115kV transformer impedance is X = 0.097 * (13.8kV / 13.8kV)
2
 * 

(100MVA / 150MVA) 

X = j0.06467 pu 

 

The base impedance for the 115kV line is ZB = V BL-L2 / P B3Φ 

ZB = (115x10
3
)
2 

/ 100x10
6
 = 132.25Ω 

The per-unit impedance of the 115kV transmission line is (5.43+j22.5) / 132.25 = 

0.04106+j0.1701 pu 

 

The 115kV / 230kV transformer impedance is X = 0.074 * (115kV / 115kV)
2
 * 

(100MVA / 225MVA) 

X = j0.03289 pu 

 

The impedance diagram with the per-unit values of the impedances is shown below. 

 

1.0pu

+

-

j0.30

j0.0647 j0.1701 j0.03289

1.0pu

+

-

3-phase

fault

j0.30

0.04106
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Problem 7 

 

Answer: 

 

The fault current is  

IF = 1.0 / (0.04106 + j0.15 + j0.0647 + j0.1701 + j0.03289) 

IF = 1.0 / (0.04106 + j0.41769) 

IF = 2.382 @ -84.4° pu 

 

At the generators, the total fault current is I FGT = 2.382 * IB 

IB = P B3Φ / √3*V BL-L = 100x10
6
 / √3*13.8x10

3
 = 4184 A 

IFGT = 2.382 * 4184 = 9966 A 

Each generator contributes half of this current 

IFG = 9966 / 2 = 4983 A 

 

At the fault, the total fault current is IF = 2.382 * IB 

IB = P B3Φ / √3*V BL-L = 100x10
6
 / √3*230x10

3
 = 251.0 A 

IF = 2.382 * 251.0 = 597.9 A 

 

 

 

Problem 8 

 

Ea = 1.0pu

+

-

j0.15

j0.0647 j0.1701 j0.032890.04106

Reference Bus

VA1

+

-

 

j0.15

j0.0647 j0.1701 j0.032890.04106

Reference Bus

VA2

+

-
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Problem 9 

 

Answer: 

 

The zero-sequence reactance of each generator is 5%, or 0.05pu on a 13.8kV, 50MVA 

base.  Converting this to a 100MVA base gives 

 

 Zpu new = j0.05 * (100 / 50) = j0.10 pu 

 

Each generator is grounded through a reactance of 2Ω.  The base impedance at 13.8kV, 

100MVA is ZB = (13.8x103)2 /  (100x106) = 1.9044Ω.  The per-unit impedance of each 

grounding reactor is Zpu = j2.0 / 1.9044 = j1.05pu.  The grounding reactance will need to 

be multiplied by three for the zero-sequence network, giving a value of 3 * j1.05 = 

j3.15pu. 

 

Because a value is not given for the zero-sequence impedance of the delta-grounded wye 

transformer, it can be assumed that the zero-sequence impedance is the same as the 

positive-sequence impedance. 

 

The zero-sequence impedance of the transmission line is 12.9 + j75.9Ω.  The base 

impedance at 115kV, 100MVA is ZB = (115x103)
2
 /  (100x10

6
) = 132.25Ω.  Converting 

the zero-sequence line impedance to a per-unit value gives ZL0 = (12.9 + j75.9) / 132.25 = 

0.0975 + j0.574pu. 

 

The zero-sequence impedance of the grounded wye-grounded wye transformer is 4.8%, 

or j0.048pu on a base of 115kV, 225MVA.  Converting to a 115kV, 100MVA base gives 

 

Zpu new = j0.048 * (100 / 225) = j0.0213 pu 

 

The zero-sequence network is shown below.  Notice the interruption in the path caused 

by the delta-wye transformer. 

 

j0.10

j0.0647 j0.574 j0.0213

Reference Bus

j0.10

0.0975

j3.15 j3.15

VA0

+

-

 

Here is a simplified version of the zero-sequence network with the two generator 

branches combined into an equivalent branch. 
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j0.0647 j0.574 j0.0213

Reference Bus

j0.05

0.0975

j1.575

VA0

+

-

 

 

Problem 10 

 

 
 

The currents are connected so that when Ia, Ib, and Ic are flowing in the trip direction 

indicated by the “trip direction” arrow, the secondary currents flow through the 

directional units from the polarity of the relay. 

 

The auxiliary transformer is wired such that the secondary voltage reflects the primary 

voltage. 

Delta–Wye on the primary, is reflected Delta–Wye on the secondary. 

 

With the trip direction of the currents established in the directional unit current coils, the 

voltages Vbc, on unit A, Vca on unit B, and Vab on unit C must be connected from 

polarity to non-polarity on the directional unit voltage coils.



Symmetrical Components Page 65

Appendix 
Three Phase System 

LLLIVS 3= , Θ= cos3 LLL IVP , Θ= sin3 LLL IVQ  
 

Per-Unit 
First step in using per-unit is to select the base(s) for the system.  

Sbase = Power base, in VA 

Vbase = voltage base in V 

Sbase = 100 MVA 

Vbase = Nominal voltage rated line-

to-line 

 

valuebase

valueactual
unitper

_

_
=−  

100

_ valuepercent
unitper =−  

 

basebasebase ZI

IZ

V

V
=  pupupu ZIV =  

 

amperes
kV

kVA
I

base

base

base
3

=  Aamperes
V

kVA
I

base

base

base 251
)230(3

100
==  

 Ex: 230kV base, 100MVA base   

PUZ

MVA
MVA

Fault

Base

Fault =  
PUZ

I
I

Fault

Base

CurrentFault =_  

 

 

ohms
kVA

xkV
Z

base

base
base

10002

=  (in kVA)  ohms
MVA

kV
Z

base

base
base

2

=  (in MVA) 

 

100

2

base

base

V
Z =  (for a 100 MVA base) 

 

base

pu
Z

Z
Z

)(Ω
=  )(

2
Ω⋅








= Z

kV

MVA
Z

base

base

pu  (in MVA) 

 

 ( )
2

100
%

base

base

kV

ZMVA
Z

Ω⋅
=  (percent in MVA) 

2









⋅=

old

base

new

baseold

ohm

new

ohm
kV

kV
ZZ  (new impedance reflective through a transformer) 

ohmsZ new

ohm 8.1
230

115
2.7

2

=







⋅=   

Ex: 115kV line impedance on the 115kV side of a 230/115kV transformer
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Symmetrical Components 
 

a Operator 
 

o
a 1201∠=   

o
a 24012 ∠=   

13 =a  

 

0.00.11 j+=  
o

a 1201∠=  
o

a 24012 ∠=  
oo

a 0136013 ∠=∠=

01 2 =++ aa  

12 −=+ aa  

o
a 6011 ∠=+  

o
a 6011 2 −∠=+

32 jaa =−  

32 jaa −=−  

oa 3031 −∠=−

 

oa 3031 2 ∠=−  
oa 15031 ∠=−  

oa 150312 −∠=−

 

 

 

 

 

 

Phase values from sequence values 

210 VVVVa ++=  

21

2

0 aVVaVVb ++=  

2

2

10 VaaVVVc ++=  

Sequence values from phase values 

( )
cba VVVV ++=

3

1
0  

( )cba VaaVVV 2

1
3

1
++=  

( )cba aVVaVV ++= 2

2
3

1
 

 

210 IIIIa ++=  

21

2

0 aIIaIIb ++=  

2

2

10 IaaIIIc ++=  

 

( )
cba IIII ++=

3

1
0  

( )cba IaaIII 2

1
3

1
++=  

( )cba aIIaII ++= 2

2
3

1
 

( )
cba IIII ++=03  (residual currents or sum 

of the three phase currents) 



Symmetrical Components Page 67

Three-Phase fault 

puZ

MVA
MVA

Fault

Base
Fault =  

 

1

1
Z

E
I a=  

002 == II  










⋅








==

kV

kVA

Z
II A

3

1001

1

1  

AB IaI
2=  

AB aII =  

 

111 1 ZIE −=  

002 == EE  

 

 

 

0ne-line to ground fault 

puZZZ

MVA
MVA Base

Fault

021

3

++

⋅
=  

 

021

210

1

ZZZ
III

++
===  

0210 3IIIII A =++=  

0== cB II  

 

111 1 ZIE −=  

222 ZIE −=  

000 ZIE −=  

 

  

0Z

2Z

1Z

2I
+

-

2V

0I
+

-

0V

1I
+

-

1Vo
01∠

0Z

2Z

1Z

2I

+

-

2V

0I
+

-

0V

1I
+

-

1Vo
01∠
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Line-Line fault, or Phase-to-phase fault 

121

21
2

11

ZZZ
II =

+
=−=  

00 =I  

 

0=AI  

11

2

21

2

21

2

0 aIIaaIIaaIIaIIB +=+=++=  

( )
12121

2 866.03

Z

j

ZZ

Ej

ZZ

Eaa
I B

−
=

+

−
=

+

−
=  

BC II −=  when 21 ZZ =  

 

111 1 ZIE −=  

1222 EZIE =−=  

00 =E  

 

 

 

Double Line to Ground fault, or Line-Line to Ground fault 

( )
20

20

1

1

1

ZZ

ZZ
Z

I
+

+
=  

102 III −=+  

20

0
12 )(

ZZ

Z
II

+
−=  

20

2
10 )(

ZZ

Z
II

+
−=  

 

111 1 ZIE −=  

1222 EZIE =−=  

1000 EZIE =−=  
2I

+

-

2V

0I
+

-

0V

0Z

2Z

1I

+

-

1Vo
01∠

1Z

0Z

2Z

1Z

2I
+

-

2V

0I

+

-

0V

1I
+

-

1Vo01∠



Symmetrical Components Page 69

L

H

H

Three Phase Connection Positive or Negative SequenceZero SequenceCircuit

ZT HL

ZT HL

ZT HL

ZT

HL

ZT HL

ZT HL

ZT HL

ZT HL

L L

HL

L H

ZnHZnL

ZnH

HL

HL

L H

L

ZT HL

3ZnH3ZnL

a

b

c

d

e

f

g

h

ZT HL

ZT HL

ZT HL

ZT HL

ZT HL

ZT HL

ZT HL

 
 

Equivalent positive, negative, and zero sequence connection for typical two-winding transformer 

banks. 
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Equivalent positive, negative, and zero sequence connection for typical three-winding and 

autotransformer banks 
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The following two charts give a summary of sequence currents and voltages for various faults.  

Remembering that the generator produces only positive sequence currents and voltages, these 

values are represented in the first column.  The right column represents the currents and voltages 

at the fault, which are non-symmetrical.  The negative and sometimes zero sequence quantities 

provide the transition between the symmetrical positive sequence quantities and non-symmetrical 

fault quantities. 

 
Positive 

Sequence

a, b, c

Ia1

Ib1
Ic1

Negative 

Sequence

Zero 

Sequence
Fault 

Currents

a, b

b, c

c, a

a, b, G

b, c, G

c, a, G

a, G

b, G

c, G

Ib2

Ia2
Ic2

Ia

Ib

Ia2

Ic2

Ib2

Ic2

Ib2

Ia2

Ib2

Ia2Ic2

Ia2

Ic2Ib2

Ic2

Ib2Ia2

Ic2

Ib2

Ia2

Ic2

Ib2

Ia2

Ia2
Ic2

Ib2

Ia0= Ib0= Ic0

Ia=0

Ic

Ia

Ic

Ia

Ib

Ia

Ia

Ib

Ic

Sequence Currents for Various Faults

Ia0= Ib0= Ic0

Ia0= Ib0= Ic0

Ia0= Ib0= Ic0

Ia0= Ib0= Ic0

Ia0= Ib0= Ic0

Ia1

Ib1
Ic1

Ia1

Ib1
Ic1

Ia1

Ib1
Ic1

Ia1

Ib1
Ic1

Ia1

Ib1
Ic1

Ia1

Ib1
Ic1

Ia1

Ib1
Ic1

Ia1

Ib1
Ic1

Ia1

Ib1
Ic1

Ia

Ib
Ic

Ic=0

Ib

Ib=0

Ic=0

IcIb

Ia=0

Ib=0
Ic

Ib= Ic=0

Ia= Ic=0

Ib= Ib=0
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Positive 

Sequence

a, b, c
Va1

Vb1

Vc1

Negative 

Sequence

Zero 

Sequence
Fault 

Voltages

a, b
Va1

Vb1

Vc1

b, c
Va1

Vb1

Vc1

c, a
Va1

Vb1

Vc1

a, b, G
Va1

Vb1

Vc1

b, c, G
Va1

Vb1

Vc1

c, a, G
Va1

Vb1

Vc1

a, G
Va1

Vb1

Vc1

b, G
Va1

Vb1

Vc1

c, G
Va1

Vb1

Vc1

Vb2

Va2

Vc2

Va=Vb

Vc

Va2

Vc2

Vb2

Vc2

Vb2

Va2

Vb2

Va2

Vc2

Va2

Vc2

Vb2

Vc2

Vb2

Va2

Vc2

Vb2

Va2

Vc2

Vb2

Va2

Va2

Vc2

Vb2

Va0= Vb0= Vc0

Vb=Vc
Va

Va=Vc

Vb

Va= Vb= 0

Vc

Vb=Vc= 0

Va

Va=Vc= 0

Vb

Va= 0

Vb= 0

Vc= 0

Sequence Voltage for Various Faults

Va0= Vb0= Vc0

Va0= Vb0= Vc0

Va0= Vb0= Vc0

Va0= Vb0= Vc0

Va0= Vb0= Vc0

Zero at 

Fault

Vb

Vb

Vc

Vc

Va

Va
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Convert wye to delta 

 
 

 

 

 

 

 

 

 

 

 

 

Convert from delta to wye 

C

B

R1

R2 R3

A

R2 R3

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

R1

RA RB⋅ RA RC⋅+ RB RC⋅+

RB

:=

R2

RA RB⋅ RA RC⋅+ RB RC⋅+

RA

:=

R3

RA RB⋅ RA RC⋅+ RB RC⋅+

RC

:=

RA

R1 R3⋅

R1 R2+ R3+
:=

RB

R2 R3⋅

R1 R2+ R3+
:=

RC

R1 R2⋅

R1 R2+ R3+
:=
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