AI HS Code Recommendation Modeling

Dr. Seon Yeong Han

I. Overview

O HS Code (Harmonized System code; Harmonized Commodity Description and Coding System)

- Numeric code representing each category of commodities subject to import and export
- HS code basically consists of 6 digits, but most countries use 10~12-digit code system for more

detailed classification

I. Overview

O Issues related to HS classification

I. Overview

O Researches on HS classification using AI

- ✓ Altaheri & Shaalan
 - Proposed an HS code classifier using the data provided by Dubai Customs for the Artificial Intelligence (AI) hackathon competition
 - · Used TF-IDF, Bag-of-Word techniques
- ✓ Spichakova & Haav
 - Proposed HS code prediction method using Doc2Vec
 - Applied a similarity metric that combines text similarity and HS code taxonomybased semantic similarity.

II. AI model

O Issues regarding data to be used for AI modeling

- (1) Mislabeled data
 - Erroneously declared commodity descriptions
- (2) Out of vocabulary
 - Newly invented or newly traded commodities
- (3) Imbalanced data
 - · Imbalanced import data between classes (HS codes)
- (4) Text dense embedding
 - Selection of appropriate training method considering learning speed

${\bf O}$ AI training model

✓ Source data:

US Imports CBP Automated Manifest System(AMS) Shipments 2020

- cargo descriptions collected from January 2002 to September 2020
- \checkmark Only first six digits of HS codes were used
- ✓ Preprocessing
 - Removal of space
 - Removal of data solely consisted of numbers
 - Removal of descriptions consisted of two or less characters
 - Removal of duplicate data

II. AI model

O AI training model

- ✓ Sub-word
 - Out-Of-Vocaburary problem (about 8% @90% train data)
 - character n-gram
 - **ex.** cellular smartphone \rightarrow {ce el ll lu ul la ar sm ma ar rt tp ph ho on ne}

celular smartphones \rightarrow {ce el lu ul la ar sm ma ar rt tp ph ho on ne es}

 \rightarrow 15/16 match \rightarrow similar embedding

- ✓ Word n- gram
 - word order information
 - **ex.** Coffee filter filtered coffee

${\bf O}$ AI training model

- ✓ Distance based outlier detection
 - mislabeled data problem
 - same class data embedding \rightarrow outlier detection

Uncommon sentence for this class

- ✓ Classification based outlier detection
 - mislabeled data problem
 - pre- classification for outlier remove

${\bf O}$ AI training model

- ✓ Balanced sampling
 - imbalanced data set problem
 - how to plausible data generation?
 - Synthetic Minority Oversampling Technique (SMOTE)

O AI training model

- ✓ Word2vec
 - convert word into vector maintaining semantic similarity
 - Continuous Bag Of Words(CBOW) : neighbor words are trained together
 - Skipgram : a word is trained towards its neighbor words
- ✓ Doc2Vec
 - word2vec with document ID
 - Paragraph Vector Distributed Memory (PV-DM) : CBOW with document ID
 - Paragraph Vector Distributed Bag Of Word (PV-DBOW) : a document ID is trained towards its words
- ✓ FastText : Word2Vec + subword
- ✓ FastText Classification : words and sub-words are trained towards class

O Implementation of AI training model

Scenario	Description			
CBOW+SVM	Classify using SVM the embeddings created by Word2Vec-CBOW			
Skipgram+SVM	Classify using SVM the embeddings created by Word2Vec-skipgram			
PV-DBOW+ms	Predict HS code using cosine similarity after embedding text using Doc2Vec PV-DBOW			
PV-DM+ms	Predict HS code using cosine similarity after embedding text using Doc2Vec PV-DM			
Doc2Vec+SVM	Classify using SVM the results provided by combined model of PV-DM and PV-DBOW			
FastText+SVM	Ext+SVM Classify using SVM the embeddings created by FastText model			
FastText-cl	Recommend HS code using FastText-classification model			
FastText-cl+d-outlier	Apply FastText-classification model after removing distance-based outlier from training data set			
FastText-cl+cl-outlier	Apply FastText-classification model after removing classification-based outlier from training data set			
FastText-cl+bigram	Consider the order of words by selecting bigram option of FastText-classification			
FastText+SVM+b-sampling	Apply SMOTE balance-sampling when creating training data set			

O Training results

- ✓ Embedding and classification models were created for each HS chapter
 Only classes with over 200 declarations were analyzed
- ✓ Performances were evaluated for five randomly selected chapters

O Accuracy : high

HS	Scenario	precision	recall	F1-score	acc@3top	acc@5top
Chapter 40	FastText-cl	0.89	0.89	0.88	0.96	0.97
Chapter 62	FastText+SVM	0.71	0.7	0.69	0.91	0.96
Chapter 73	FastText-cl	0.75	0.74	0.74	0.87	0.91
Chapter 61	FastText-cl+bigram	0.76	0.76	0.76	0.89	0.93
Chapter 33	FastText-cl+bigram	0.8	0.8	0.79	0.93	0.96

O Accuracy : low

HS	Scenario	precision	recall	F1-score	acc@3top	acc@5top
Chapter 40	PV-DM+ms	0.79	0.49	0.52	0.68	0.76
Chapter 62	CBOW+SVM	0.56	0.57	0.54	0.76	0.83
Chapter 73	CBOW+SVM	0.66	0.6	0.59	0.8	0.86
Chapter 61	CBOW+SVM	0.63	0.61	0.6	0.81	0.87
Chapter 33	CBOW+SVM	0.58	0.58	0.55	0.8	0.88

O Training results

✓ Avrage Precision, Recall, F1-score for 5 Chapters

✓ Average acc@3top, acc@5top Performance for 5 Chapters

The results of the application of 10 models to five randomly selected chapters show that

FastText-cl+bigram presents great performances in all of the five chapters.

III. Conclusion

O AI model concept diagram

O Expected effects

- ✓ Decrease of erroneously declared HS codes
- ✓ Post-audit for detection of illegal declaration submitted after release of goods
 - → Improved revenue collection by Customs Administration

thanks to the accurate declaration of HS code