

EDF Ageing Management Program

TECHNICAL AND REGULATORY ISSUES FACING NUCLEAR POWER PLANTS

1st - 2nd June 2016

Chicago

Jean BARBAUD

DIPNN - DTI

© EDF 2016

- 1. EDF PWR Fleet data and LTO context
- 2. Ageing Management Program
- 3. Focus on Material Ageing R&D Program
- 4. Conclusion

NPP series	900 (3 loops)	1300 (4 loops)	1450 (4 loops)	1650 (4 loops)
Number	34	20	4	1
Average age	34	28	18	Construc -tion

- 58 reactors in operation
- 1 reactor (EPR) under construction
- spread out over 19 sites
- Average age : 29 years
- 18 units will reach 40 years before 2020

EDF PWR fleet

Long Term Operation: a multi facets challenge

The Periodic Safety Review (PSR) process

A mandatory process

- Implemented since the 2nd 10-year outage of 900 MW series
- Introduced in the French law (TSN) in 2006
- Common EU practice included in Nuclear Safety Directive
- To be performed each 10 years

It includes two main aspects :

- Compliance assessment with existing safety basis, checking and inspections, assessment of ageing mechanisms, including
 - Basic inspection programs and additional inspection programs
 - Containment test, Main primary circuit hydro test
- Reassessment and updating of the licensing basis (internal/external events, severe accidents, PSA...), taking into account experience feedback, new knowledge, best international practices & requirements applicable to new NPPs
- Enables to define measures to improve the safety of the plant
 - In practice these measures are implemented during the next 10-year outage (VD in French), which are longer than refueling outages

The Periodic Safety Review (PSR) process

> French ASN allows 10 years operation after each PSR:

	VD1 (10 years)	VD2 (20 years)	VD3 (30 years)	VD4 (40 years)
900 MW (34 units)		done	2009 to 2020 (25 units done)	2019 to 2030
1300 MW (20 units)		done	2015 to 2024	2025 to 2034
1450 MW – N4 (4 units)	done	2019 to 2022	2029 to 2032	2039 à 2042

> Numerous improvements have already been implemented on the existing NPPs, i.e.:

- Examples of improvements already implemented
- filtered containment venting device (U5-1986),
- H2 passive recombiners,
- containment sump strainers
- back up power supply (LLS, additional diesel or TAC / site),
- spent fuel pool make-up improvements
- seismic upgrade ...

- PSR associated to VD4 900 will be the first to need the ASN authorization for the step beyond 40 years (initial design hypothesis)
 - EDF Orientation file sent to ASN by end of 2013, with complements up to mid 2014
 - Framing Advisory Group meeting in April 2015; French ASN position on review program received in April 2016

EDF Modernization program for existing NPPs

- ☐ It will be monitored through a specific project, the "EDF industrial project" ("Grand Carénage") which:
 - ✓ integrates all modifications issued from the different programs (PSR, Refurbishment program, post Fukushima and all other modification or maintenance programs) with a multi-annual vision
 - ✓ assures the monitoring off all aspects of the program: nuclear safety, availability, economic and financial dimension, industrial resources, internal resources and skills, logistic
 - ✓ Aims at operating the fleet well beyond 40 years, up to 60 years

- 1. EDF PWR Fleet data and context
- 2. Ageing Management Program
- 3. Focus on Material Ageing R&D Program
- 4. Conclusion

Ageing Management Program Process

- The major objective is to justify that all the components concerned by an ageing mechanism remain within the design and safety criteria.
- The AMP procedure, described in a generic guideline, is carried out in 4 main steps:
 - Selection of structures, systems and components (SSC) concerned by an ageing mechanism
 - Review of all the couples SSC / degradation mechanism selected by experts and synthetic analyses in Ageing Analysis Sheets (AAS)
 - Detailed Ageing Management Reports (DAAR) required for some sensitive components
 - Unit Ageing Analysis Report (UAAR)
- ▶ All these reports have to be prepared in agreement with the French regulation.

Ageing Management Program Procedure

Step 1 : Selection of Structures, Systems and Components (SCC)

- Mechanical components of all safety classes
- Electrical components (class 1E)
- Civil engineering structures
- SSCs not important to safety but likely to affect a SSC important to safety due to an ageing degradation.
- Around 70 components or group of components or structures selected
- Around 50 degradation mechanisms of components or structures considered

Ageing Management Program Procedure

- Step 2 : Review of all selected couples SSC /ageing mechanism : Ageing Analysis data Sheet (AAS)
 - Analysis of ageing mechanism concerning each of the selected SSCs, potential or encountered
 - Consequences of the mechanism on the SSC and its safety function
 - Availability of the routine maintenance program and of the operation procedures
 - Difficulty to repair or to replace the SSC
 - Risk linked with obsolescence

For each couple [SSC / Ageing mechanism] an Ageing Analysis Data Sheet is written (near 600 sheets on the whole for 900 MW series)

Ageing analysis data sheet (AAS) Final status principle

	Enc	ountered meca	anism	Potential mecanisme			
Maintenance and Operation	Adapted	Adaptable	Difficult to adapt	Adapted	Adaptable	Difficult to adapt	
Repair and replacement difficult	2	2	2	0	1	2	
Repair or replacement not difficult	0	1	2	0	1	1	

Status 0 : Ageing under control, without any other information needed

Status 1: Temporary state – complementary instruction is needed (30 for 900 MW series)

Status 2: An Ageing Management Detailed Report is required (29 for 900 MW series)

Ageing Management Program

Step 3: (for components with ageing data sheets in status 2): Generic Detailed Ageing Analysis Reports (DAAR)

Content:

- Design basis : regulation, codes & standards, specifications and guidelines
- Description of the component and operating experience : design, materials, fabrication process, water chemistry, operating conditions and feedback experience
- Ageing mechanisms, scientific knowledge, damage rate and fitness for service analysis, surveillance and ISI, mitigation, repair process,
- Industrial capacity and obsolescence: repair, replacement, tools availability
- Output: Synthesis and Specific Component Ageing Management Program, including surveillance, maintenance, modification, operating conditions, R&D actions

Ageing Management Program

12 Detailed Ageing Analysis Reports (DAAR)

- Reactor Pressure Vessel
- RPV internals
- Steam generator
- Pressurizer
- Main coolant line of reactor cooling system
- Auxiliary lines connected to reactor cooling system
- Main coolant pump

- Containment
- Other nuclear civil engineering structures
- Electrical penetration in the containment
- Electrical cables
- I&C systems

Ageing Management Program

The Unit Ageing Analysis Report:

- is based on Detailed Ageing Analysis Reports and Ageing Analysis Sheets,
- its conclusion is the ageing action plan of the unit
- is approved by the Plant Technical Committee and signed by the NPP Site Manager
- is sent to Nuclear Safety Authority before each 3rd 10Y outage
- is updated after each 10Y outage in order to include maintenance activities, modifications, inspection and test results

10 units received prescriptions from the Nuclear Safety Authority for their operation till their 4th 10Y outage: Tricastin 1-2-3, Fessenheim 1-2, Bugey 2-4-5, Dampierre 1-2

Ageing Management Program Review

- The AMP is regularly reviewed
 - Through an annual examination of ageing analysis data sheets:
 - to take into account national and international feedback experience
 - + information coming up from the plants
 - to be consistent with evolution of operation procedures and maintenance strategies,
 - to implement new results from R&D on going programs
 - to possibly complement the list of SSCs and of ageing mechanisms.
 - Through a 5-year examination of the 12 Detailed Ageing Analysis Reports

The results of this periodic review are required by French Safety Authority

- 1. EDF PWR Fleet data and context
- 2. Ageing Management Program
- 3. Focus on Material Ageing R&D Program
- 4. Conclusion

Material R&D Program

The major objectives of the Materials R&D Program are:

- To ensure that all the pertinent ageing mechanisms are evaluated (including possible mechanisms),
- Increase the knowledge in the areas and technical fields when required,
- Avoid penalising extrapolations due to a lack of data,
- Acquire needed data for equivalent 60 year ageing to check they remain within the design and safety criteria.

Approach:

- Ageing R&D Programs for all areas sensitive to ageing or degradation mechanisms
- Representative materials
 (archive or sampled materials or removed components or dedicated mock-ups)
- Ageing in furnaces (thermal ageing) or experimental reactors (irradiation) or loops (corrosion)
- Materials tested after equivalent 60 years ageing time,
- Mechanical data (toughness, tensile, fatigue...), CSC data (initiation and propagation), corrosion rate, etc.

Main Materials R&D Programs Mechanisms taken into account (1/2)

- 1 Embrittlement mechanisms
 - **→** Neutron embrittlement : RPV steel and welds, internals
 - Thermal ageing: CASS, Austenitic SS welds and dissimilar welds, Martensitic Stainless Steels, Low Alloy Steels and C-Mn steels

2 Corrosion

- **→ Stress Corrosion Cracking** (Irradiation Assisted) of RPV Internals
- **→ Stress Corrosion Cracking of cold work austenitic Stainless Steels** (316L)
- **➡** Stress Corrosion Cracking of Nickel base alloys: Alloy 600 and welds
- **→** Boric Acid Corrosion...
- **→** FAC in secondary circuit,
- **→** ...

Main Materials R&D Programs Mechanisms taken into account (2/2)

- 3 Fatigue
 - **▶** Low Cycle and High Cycle fatigue (Thermal Fatigue)
 - Mixing areas
 - Better evaluation of stratification loads with a Fatigue Assessment Device
 - **→** Environmental Assisted effects:
 - Mainly for austenitic stainless steels
- 4 Degradation with loss of material: Wear
 - **→** Impact Sliding Wear
- 5 Degradation of non metallic material
 - **→** Polymers: Physical Ageing, Chemical Ageing...
 - **→** Concretes:
 - Swelling (Alkali Silicate Reaction...)
 - Creep...

The Materials Ageing Institute for R&D relative to plant life extension

- Need for Predictive Capability for
- **Materials Ageing Institute**

- Inspections
- Mitigations
- Replacement
- Through Mechanistic understanding of ageing processes

- 11 Members (Utilities...) representing 66% NPPs
- 80 Researchers and technicians involved
- 20 universities / scientific institutes associate
- 11 M€ annual budget in 2013
- 35 M€ total EDF's Investment (2008-2016)
- 250 participants yearly in the E&T program
- 12 main projects

- 1. EDF PWR Fleet data and context
- 2. Ageing Management Program
- 3. Focus on Material Ageing R&D Program
- 4. Conclusion

Conclusion and perspectives on EDF LTO strategy

LTO will bring additional value to existing NPPs as a tool to produce safe, reliable, economical, clean and low carbon electricity,

LTO constitutes a challenge which multiple aspects. Among the most importants:

- Continuous improvement of safety to reduce gaps with new NPPS, mainly through PSR process
- Adequate management of Ageing and obsolescence

Lifetime extension (up to 60Y) should be reasonably achieved owing to:

- Adequate maintenance strategy and program
- Complementary analysis for non-replaceable components: RPV and containment building.
- Extensive R&D Programs to support this analysis

Thank you for your attention

- 1. EDF PWR Fleet data and context
- 2. Ageing Management Program
- 3. Focus on Material Ageing R&D Program
- 4. Conclusion

Appendixes

EDF Step 1 : Selection of Safety class components

		COMPONENTS / STRUCTURES		COMPONENTS / STRUCTURES				COMPONENTS / STRUCTURES
100		Primary system	600	Electrical components	9	900		Civil engineering structures
		RPV	601	EMERGENCY DIESEL GENERATORS			901	CONFINEM ENT BUILDING
	102	RVI	602	ELECTRICAL PANNEL			902	PIPE PENETRATION
	103	CRDM		MV and LV MOTORS			903	ELECTRICAL PENETRATION
	104	PRESSURIZOR & SURGE LINE	604	CONVERTORS (INVERTERS and LOADERS)			904	MATERIAL and PERSONAL HATCH
	105	PRESSURIZOR SEBIM SAFETY VALVE	605	ELECTRICAL BATTERIES			905	NUCLEAR CIVIL ENGINEERING STRUCTURES
	106	SG	606	MAIN TRANSFORMERS			906	BUILDINGS and STRUCTURES
	107	MCP	607	AUTOMATIC RELAIS			907	REACTOR BUILDING and FUEL POOLS
	108	MCL	608	ELECTROVALVE JACOUMATIC			908	FIRE PROTECTION
	109	AUXILIARY CONNECTED LINES	609	CONNECTORS AIR-LB			909	SITE STRUCTURES
	110	VALVES & CHECK VALVES	610	RAYCHEM CONNECTIC			910	BONA CONCRETE PIPINGS
200		Secondary system	611	CONNECTORS K1 (seismicly design)			911	COOLING TOWERS
	201	MSIV	700	Instrumentation				
	202	SG SAFETY VALVE	701	EX CORE NEUTRONIC MEASUREMENT	ľ	1000		No-metallic no-concrete materials
	203	SECONDARY SYSTEM PIPINGS	702	POSITION DETECTOR			1001	Polymers
300		Other nuclear components	703	ON-OFF CAPTOR			1002	Oils
	301	OTHER NUCLEAR PIPINGS (class 2-3)	704	TEMPERATURE PROBE				
	302	FIRE PROTECTION PIPING	705	IN-CORE THERMOCOUPLE				
	303	PUMPS	706	HYDROGEN-METER				
	304	AFW TURBOPUMP	707	ANALOGIC FLOW-METER				
	305	TURBOALTERNATEUR LLS	708	UT FLOW-METER				
	306	NUCLEAR HX	709	ANALOGIC PRESSURE TRANSMITTER				
400		Non nuclear components	710	UT TRANSMITTERS				
	401	TANKS	711	KRT PROTECTION CHANNEL				
	402	AUXILIARY PIPINGS	712	REGUL ROD POSITION MEASUREMENT				
	403	VENTILATIONS	713	PROTECTION RELAY				
	404	HANDLING DEVICES	714	COUNTER				
	405	SERVICE WATER FILTERS	715	RPV LEVEL MEASUREMENT				
500		cables	716	AUTOMATIC SCRAM INSTRUMENTATION				
	501	ELECTRICAL CABLES	800	Control components				
	502	CABLEWAYS	801	CONTROL ROOM / EMERGENCY PANNEL				
	503	MINERAL and COAXIAL CABLES	802	OTHER CONTROL COMPONENTS				

Around 70 components or group of components or structures

EDF Step 1: List of degradation mechanism

sigle	mechanism	domain	sigle	mechanism	domain
ABR01	General abrasion	All materials		Fatigue	Ferritic / austenitic steels
	Carbonatation	Concrete		Vibration fatigue	All material
CER01	Erosion-Corrosion (FAC)	Carbon and low alloy steels		Fatigue corrosion	Carbon and low alloy steels
	Intercristallin corrosion secondary water	Alloy 600 tubes		Environmental fatigue	All steels
CICO1	Intercristalline corrosion	Austenitic Stainless Steels		Buckling	All materials
	Boric acid corrosion	Carbon and low alloy steels	FLU01	Radiation creep	Austenitic Stainless Steels of RVI
	Corrosion concrete rebars	Reinforced concrete	FSI01	Radiation creep Radiation embrittlement	
		Stainless steels	FSI01	Radiation embrittlement	Low alloys RPV steels Austenitic Stainless Steels of RVI
	Boric acid corrosion				
	Waterline corrosion	All Steels		Sw elling	Irradiated stainless steels (RVI)
	General corrosion	All materials	HYD01	Hydrolyse	Composite piping
COR06	Atmospheric corrosion	Ferritic/ austenitic DMW interface	INS01	Gross plasticity - Plastic collapse	All steels
CPI01	Pitting corrosion	Carbon and low alloy steels	POL01	Ageing of Polymers	Polymers under nominal env.
CP102	Pitting corrosion	Stainless steels	POL02	Ageing of Polymers	Sheath and insulater of cables "hot poin
CSC01	PWR stress corrosion	Ni-based alloys type 600	POL03	Ageing of Neopren	Anti-vibration devices
CSC03	PWR stress corrosion	Nickel based alloy w elds 82-182	RAG01	Alcali-réaction	Concrete
CSC04	PWR polluted water stress corrosion	Austenitic Stainless Steels	REL01	Cable pre-stress relaxation	Pre-stressed concrete
CSC05	PWR stress corrosion	Cold w orked Austenitic Stainless Steels	RET01	Shrinkage	Pre-stressed concrete
CSC06	Nominal PWR water stress corrosion	Carbon and low alloy steels	RUP01	Brittle fracture	Carbon, low alloy and martensitic steels
CSC07	Nominal PWR w ater stress corrosion	Austenitic Stainless Steels	RUP02	Brittle fracture	Carbon and low alloy steels
CSC02	Secondary stress corrosion	Austenitic Stainless Steels	TAS01	Settlement	Ground
CSC08	PWR stress corrosion	Ni-based alloys type 750	USU01	General w ear	All materials
CSC09	Irradiated Stress Corrosion cracking (IASCC)	Austenitic Stainless Steels of RVI	USU02	Shock and slidding wear	Core instrumentation thimble
DEC01	Ductile tearing	Alloy steels	VIE01	Ageing	I&C
DEC02	Ductile tearing	Cast austenitic duplex stainless steel	VTH01	Thermal Ageing	Carbon and low alloy steels
DEC03	Ductile tearing	Austenitic Stainless Steels of RVI	VTH02	Thermal Ageing	Martensitic stainless steels
DEF01	Plastic Shakedow n	All steels	VTH03	Thermal Ageing	Austenoferritic duplex cast stainless st
ECA01	Erosion Cavitation	all steels	VTH04	Thermal Ageing	DMW - dilution / interface area
ERO01	Erosion	All materials	VTH05	Thermal Ageing	Stainless steel w elds

Materials R&D Program in support of Ageing Management

Steam generator

Sherlock Project:

In the frame of EDF R&D (Material Ageing Institute), 2 steam generators would be retired and examined in order to improve the understanding of ageing mechanisms.

Sherlock will have an 8-year program of activities, called the "Core Program" that was developed by EDF R&D with external participation of utilities, organisations representing utilities, vendors and other companies in the nuclear industry.

The extend of the examinations and samplings depends on:

- Decontamination solutions
- Feasibility to perform the examinations without degradation of the materials (due to decontamination and sampling)

Material Program

