EDF Ageing Management Program TECHNICAL AND REGULATORY ISSUES FACING NUCLEAR POWER PLANTS 1st - 2nd June 2016 Chicago Jean BARBAUD DIPNN - DTI © EDF 2016 - 1. EDF PWR Fleet data and LTO context - 2. Ageing Management Program - 3. Focus on Material Ageing R&D Program - 4. Conclusion | NPP
series | 900
(3
loops) | 1300
(4
loops) | 1450
(4
loops) | 1650
(4
loops) | |---------------|---------------------|----------------------|----------------------|----------------------| | Number | 34 | 20 | 4 | 1 | | Average age | 34 | 28 | 18 | Construc
-tion | - 58 reactors in operation - 1 reactor (EPR) under construction - spread out over 19 sites - Average age : 29 years - 18 units will reach 40 years before 2020 #### **EDF PWR fleet** ## Long Term Operation: a multi facets challenge ### The Periodic Safety Review (PSR) process ### A mandatory process - Implemented since the 2nd 10-year outage of 900 MW series - Introduced in the French law (TSN) in 2006 - Common EU practice included in Nuclear Safety Directive - To be performed each 10 years #### It includes two main aspects : - Compliance assessment with existing safety basis, checking and inspections, assessment of ageing mechanisms, including - Basic inspection programs and additional inspection programs - Containment test, Main primary circuit hydro test - Reassessment and updating of the licensing basis (internal/external events, severe accidents, PSA...), taking into account experience feedback, new knowledge, best international practices & requirements applicable to new NPPs - Enables to define measures to improve the safety of the plant - In practice these measures are implemented during the next 10-year outage (VD in French), which are longer than refueling outages ### The Periodic Safety Review (PSR) process #### > French ASN allows 10 years operation after each PSR: | | VD1
(10 years) | VD2
(20 years) | VD3
(30 years) | VD4
(40 years) | |------------------------|-------------------|-------------------|---------------------------------|-------------------| | 900 MW (34 units) | | done | 2009 to 2020
(25 units done) | 2019 to 2030 | | 1300 MW (20 units) | | done | 2015 to 2024 | 2025 to 2034 | | 1450 MW – N4 (4 units) | done | 2019 to 2022 | 2029 to 2032 | 2039 à 2042 | #### > Numerous improvements have already been implemented on the existing NPPs, i.e.: - Examples of improvements already implemented - filtered containment venting device (U5-1986), - H2 passive recombiners, - containment sump strainers - back up power supply (LLS, additional diesel or TAC / site), - spent fuel pool make-up improvements - seismic upgrade ... - PSR associated to VD4 900 will be the first to need the ASN authorization for the step beyond 40 years (initial design hypothesis) - EDF Orientation file sent to ASN by end of 2013, with complements up to mid 2014 - Framing Advisory Group meeting in April 2015; French ASN position on review program received in April 2016 ## **EDF Modernization program for existing NPPs** - ☐ It will be monitored through a specific project, the "EDF industrial project" ("Grand Carénage") which: - ✓ integrates all modifications issued from the different programs (PSR, Refurbishment program, post Fukushima and all other modification or maintenance programs) with a multi-annual vision - ✓ assures the monitoring off all aspects of the program: nuclear safety, availability, economic and financial dimension, industrial resources, internal resources and skills, logistic - ✓ Aims at operating the fleet well beyond 40 years, up to 60 years - 1. EDF PWR Fleet data and context - 2. Ageing Management Program - 3. Focus on Material Ageing R&D Program - 4. Conclusion ## **Ageing Management Program Process** - The major objective is to justify that all the components concerned by an ageing mechanism remain within the design and safety criteria. - The AMP procedure, described in a generic guideline, is carried out in 4 main steps: - Selection of structures, systems and components (SSC) concerned by an ageing mechanism - Review of all the couples SSC / degradation mechanism selected by experts and synthetic analyses in Ageing Analysis Sheets (AAS) - Detailed Ageing Management Reports (DAAR) required for some sensitive components - Unit Ageing Analysis Report (UAAR) - ▶ All these reports have to be prepared in agreement with the French regulation. ## **Ageing Management Program Procedure** Step 1 : Selection of Structures, Systems and Components (SCC) - Mechanical components of all safety classes - Electrical components (class 1E) - Civil engineering structures - SSCs not important to safety but likely to affect a SSC important to safety due to an ageing degradation. - Around 70 components or group of components or structures selected - Around 50 degradation mechanisms of components or structures considered ## **Ageing Management Program Procedure** - Step 2 : Review of all selected couples SSC /ageing mechanism : Ageing Analysis data Sheet (AAS) - Analysis of ageing mechanism concerning each of the selected SSCs, potential or encountered - Consequences of the mechanism on the SSC and its safety function - Availability of the routine maintenance program and of the operation procedures - Difficulty to repair or to replace the SSC - Risk linked with obsolescence For each couple [SSC / Ageing mechanism] an Ageing Analysis Data Sheet is written (near 600 sheets on the whole for 900 MW series) ## Ageing analysis data sheet (AAS) Final status principle | | Enc | ountered meca | anism | Potential mecanisme | | | | |-------------------------------------|---------|---------------|--------------------|---------------------|-----------|--------------------|--| | Maintenance
and
Operation | Adapted | Adaptable | Difficult to adapt | Adapted | Adaptable | Difficult to adapt | | | Repair and replacement difficult | 2 | 2 | 2 | 0 | 1 | 2 | | | Repair or replacement not difficult | 0 | 1 | 2 | 0 | 1 | 1 | | Status 0 : Ageing under control, without any other information needed Status 1: Temporary state – complementary instruction is needed (30 for 900 MW series) Status 2: An Ageing Management Detailed Report is required (29 for 900 MW series) ## **Ageing Management Program** # Step 3: (for components with ageing data sheets in status 2): Generic Detailed Ageing Analysis Reports (DAAR) #### Content: - Design basis : regulation, codes & standards, specifications and guidelines - Description of the component and operating experience : design, materials, fabrication process, water chemistry, operating conditions and feedback experience - Ageing mechanisms, scientific knowledge, damage rate and fitness for service analysis, surveillance and ISI, mitigation, repair process, - Industrial capacity and obsolescence: repair, replacement, tools availability - Output: Synthesis and Specific Component Ageing Management Program, including surveillance, maintenance, modification, operating conditions, R&D actions ## **Ageing Management Program** ### 12 Detailed Ageing Analysis Reports (DAAR) - Reactor Pressure Vessel - RPV internals - Steam generator - Pressurizer - Main coolant line of reactor cooling system - Auxiliary lines connected to reactor cooling system - Main coolant pump - Containment - Other nuclear civil engineering structures - Electrical penetration in the containment - Electrical cables - I&C systems ## **Ageing Management Program** #### The Unit Ageing Analysis Report: - is based on Detailed Ageing Analysis Reports and Ageing Analysis Sheets, - its conclusion is the ageing action plan of the unit - is approved by the Plant Technical Committee and signed by the NPP Site Manager - is sent to Nuclear Safety Authority before each 3rd 10Y outage - is updated after each 10Y outage in order to include maintenance activities, modifications, inspection and test results 10 units received prescriptions from the Nuclear Safety Authority for their operation till their 4th 10Y outage: Tricastin 1-2-3, Fessenheim 1-2, Bugey 2-4-5, Dampierre 1-2 ## **Ageing Management Program Review** - The AMP is regularly reviewed - Through an annual examination of ageing analysis data sheets: - to take into account national and international feedback experience - + information coming up from the plants - to be consistent with evolution of operation procedures and maintenance strategies, - to implement new results from R&D on going programs - to possibly complement the list of SSCs and of ageing mechanisms. - Through a 5-year examination of the 12 Detailed Ageing Analysis Reports The results of this periodic review are required by French Safety Authority - 1. EDF PWR Fleet data and context - 2. Ageing Management Program - 3. Focus on Material Ageing R&D Program - 4. Conclusion ## **Material R&D Program** #### The major objectives of the Materials R&D Program are: - To ensure that all the pertinent ageing mechanisms are evaluated (including possible mechanisms), - Increase the knowledge in the areas and technical fields when required, - Avoid penalising extrapolations due to a lack of data, - Acquire needed data for equivalent 60 year ageing to check they remain within the design and safety criteria. #### Approach: - Ageing R&D Programs for all areas sensitive to ageing or degradation mechanisms - Representative materials (archive or sampled materials or removed components or dedicated mock-ups) - Ageing in furnaces (thermal ageing) or experimental reactors (irradiation) or loops (corrosion) - Materials tested after equivalent 60 years ageing time, - Mechanical data (toughness, tensile, fatigue...), CSC data (initiation and propagation), corrosion rate, etc. ## Main Materials R&D Programs Mechanisms taken into account (1/2) - 1 Embrittlement mechanisms - **→** Neutron embrittlement : RPV steel and welds, internals - Thermal ageing: CASS, Austenitic SS welds and dissimilar welds, Martensitic Stainless Steels, Low Alloy Steels and C-Mn steels ## 2 Corrosion - **→ Stress Corrosion Cracking** (Irradiation Assisted) of RPV Internals - **→ Stress Corrosion Cracking of cold work austenitic Stainless Steels** (316L) - **➡** Stress Corrosion Cracking of Nickel base alloys: Alloy 600 and welds - **→** Boric Acid Corrosion... - **→** FAC in secondary circuit, - **→** ... ## Main Materials R&D Programs Mechanisms taken into account (2/2) - 3 Fatigue - **▶** Low Cycle and High Cycle fatigue (Thermal Fatigue) - Mixing areas - Better evaluation of stratification loads with a Fatigue Assessment Device - **→** Environmental Assisted effects: - Mainly for austenitic stainless steels - 4 Degradation with loss of material: Wear - **→** Impact Sliding Wear - 5 Degradation of non metallic material - **→** Polymers: Physical Ageing, Chemical Ageing... - **→** Concretes: - Swelling (Alkali Silicate Reaction...) - Creep... ## The Materials Ageing Institute for R&D relative to plant life extension - Need for Predictive Capability for - **Materials Ageing Institute** - Inspections - Mitigations - Replacement - Through Mechanistic understanding of ageing processes - 11 Members (Utilities...) representing 66% NPPs - 80 Researchers and technicians involved - 20 universities / scientific institutes associate - 11 M€ annual budget in 2013 - 35 M€ total EDF's Investment (2008-2016) - 250 participants yearly in the E&T program - 12 main projects - 1. EDF PWR Fleet data and context - 2. Ageing Management Program - 3. Focus on Material Ageing R&D Program - 4. Conclusion ### Conclusion and perspectives on EDF LTO strategy LTO will bring additional value to existing NPPs as a tool to produce safe, reliable, economical, clean and low carbon electricity, LTO constitutes a challenge which multiple aspects. Among the most importants: - Continuous improvement of safety to reduce gaps with new NPPS, mainly through PSR process - Adequate management of Ageing and obsolescence Lifetime extension (up to 60Y) should be reasonably achieved owing to: - Adequate maintenance strategy and program - Complementary analysis for non-replaceable components: RPV and containment building. - Extensive R&D Programs to support this analysis # Thank you for your attention - 1. EDF PWR Fleet data and context - 2. Ageing Management Program - 3. Focus on Material Ageing R&D Program - 4. Conclusion #### **Appendixes** ## **EDF Step 1 : Selection of Safety class components** | | | COMPONENTS / STRUCTURES | | COMPONENTS / STRUCTURES | | | | COMPONENTS / STRUCTURES | |-----|-----|-----------------------------------|-----|------------------------------------|---|------|------|--------------------------------------| | 100 | | Primary system | 600 | Electrical components | 9 | 900 | | Civil engineering structures | | | | RPV | 601 | EMERGENCY DIESEL GENERATORS | | | 901 | CONFINEM ENT BUILDING | | | 102 | RVI | 602 | ELECTRICAL PANNEL | | | 902 | PIPE PENETRATION | | | 103 | CRDM | | MV and LV MOTORS | | | 903 | ELECTRICAL PENETRATION | | | 104 | PRESSURIZOR & SURGE LINE | 604 | CONVERTORS (INVERTERS and LOADERS) | | | 904 | MATERIAL and PERSONAL HATCH | | | 105 | PRESSURIZOR SEBIM SAFETY VALVE | 605 | ELECTRICAL BATTERIES | | | 905 | NUCLEAR CIVIL ENGINEERING STRUCTURES | | | 106 | SG | 606 | MAIN TRANSFORMERS | | | 906 | BUILDINGS and STRUCTURES | | | 107 | MCP | 607 | AUTOMATIC RELAIS | | | 907 | REACTOR BUILDING and FUEL POOLS | | | 108 | MCL | 608 | ELECTROVALVE JACOUMATIC | | | 908 | FIRE PROTECTION | | | 109 | AUXILIARY CONNECTED LINES | 609 | CONNECTORS AIR-LB | | | 909 | SITE STRUCTURES | | | 110 | VALVES & CHECK VALVES | 610 | RAYCHEM CONNECTIC | | | 910 | BONA CONCRETE PIPINGS | | 200 | | Secondary system | 611 | CONNECTORS K1 (seismicly design) | | | 911 | COOLING TOWERS | | | 201 | MSIV | 700 | Instrumentation | | | | | | | 202 | SG SAFETY VALVE | 701 | EX CORE NEUTRONIC MEASUREMENT | ľ | 1000 | | No-metallic no-concrete materials | | | 203 | SECONDARY SYSTEM PIPINGS | 702 | POSITION DETECTOR | | | 1001 | Polymers | | 300 | | Other nuclear components | 703 | ON-OFF CAPTOR | | | 1002 | Oils | | | 301 | OTHER NUCLEAR PIPINGS (class 2-3) | 704 | TEMPERATURE PROBE | | | | | | | 302 | FIRE PROTECTION PIPING | 705 | IN-CORE THERMOCOUPLE | | | | | | | 303 | PUMPS | 706 | HYDROGEN-METER | | | | | | | 304 | AFW TURBOPUMP | 707 | ANALOGIC FLOW-METER | | | | | | | 305 | TURBOALTERNATEUR LLS | 708 | UT FLOW-METER | | | | | | | 306 | NUCLEAR HX | 709 | ANALOGIC PRESSURE TRANSMITTER | | | | | | 400 | | Non nuclear components | 710 | UT TRANSMITTERS | | | | | | | 401 | TANKS | 711 | KRT PROTECTION CHANNEL | | | | | | | 402 | AUXILIARY PIPINGS | 712 | REGUL ROD POSITION MEASUREMENT | | | | | | | 403 | VENTILATIONS | 713 | PROTECTION RELAY | | | | | | | 404 | HANDLING DEVICES | 714 | COUNTER | | | | | | | 405 | SERVICE WATER FILTERS | 715 | RPV LEVEL MEASUREMENT | | | | | | 500 | | cables | 716 | AUTOMATIC SCRAM INSTRUMENTATION | | | | | | | 501 | ELECTRICAL CABLES | 800 | Control components | | | | | | | 502 | CABLEWAYS | 801 | CONTROL ROOM / EMERGENCY PANNEL | | | | | | | 503 | MINERAL and COAXIAL CABLES | 802 | OTHER CONTROL COMPONENTS | | | | | | | | | | | | | | | Around 70 components or group of components or structures ## **EDF Step 1: List of degradation mechanism** | sigle | mechanism | domain | sigle | mechanism | domain | |-------|--|--|-------|--|---| | ABR01 | General abrasion | All materials | | Fatigue | Ferritic / austenitic steels | | | Carbonatation | Concrete | | Vibration fatigue | All material | | CER01 | Erosion-Corrosion (FAC) | Carbon and low alloy steels | | Fatigue corrosion | Carbon and low alloy steels | | | Intercristallin corrosion secondary water | Alloy 600 tubes | | Environmental fatigue | All steels | | CICO1 | Intercristalline corrosion | Austenitic Stainless Steels | | Buckling | All materials | | | Boric acid corrosion | Carbon and low alloy steels | FLU01 | Radiation creep | Austenitic Stainless Steels of RVI | | | Corrosion concrete rebars | Reinforced concrete | FSI01 | Radiation creep Radiation embrittlement | | | | | Stainless steels | FSI01 | Radiation embrittlement | Low alloys RPV steels Austenitic Stainless Steels of RVI | | | Boric acid corrosion | | | | | | | Waterline corrosion | All Steels | | Sw elling | Irradiated stainless steels (RVI) | | | General corrosion | All materials | HYD01 | Hydrolyse | Composite piping | | COR06 | Atmospheric corrosion | Ferritic/ austenitic DMW interface | INS01 | Gross plasticity - Plastic collapse | All steels | | CPI01 | Pitting corrosion | Carbon and low alloy steels | POL01 | Ageing of Polymers | Polymers under nominal env. | | CP102 | Pitting corrosion | Stainless steels | POL02 | Ageing of Polymers | Sheath and insulater of cables "hot poin | | CSC01 | PWR stress corrosion | Ni-based alloys type 600 | POL03 | Ageing of Neopren | Anti-vibration devices | | CSC03 | PWR stress corrosion | Nickel based alloy w elds 82-182 | RAG01 | Alcali-réaction | Concrete | | CSC04 | PWR polluted water stress corrosion | Austenitic Stainless Steels | REL01 | Cable pre-stress relaxation | Pre-stressed concrete | | CSC05 | PWR stress corrosion | Cold w orked Austenitic Stainless Steels | RET01 | Shrinkage | Pre-stressed concrete | | CSC06 | Nominal PWR water stress corrosion | Carbon and low alloy steels | RUP01 | Brittle fracture | Carbon, low alloy and martensitic steels | | CSC07 | Nominal PWR w ater stress corrosion | Austenitic Stainless Steels | RUP02 | Brittle fracture | Carbon and low alloy steels | | CSC02 | Secondary stress corrosion | Austenitic Stainless Steels | TAS01 | Settlement | Ground | | CSC08 | PWR stress corrosion | Ni-based alloys type 750 | USU01 | General w ear | All materials | | CSC09 | Irradiated Stress Corrosion cracking (IASCC) | Austenitic Stainless Steels of RVI | USU02 | Shock and slidding wear | Core instrumentation thimble | | DEC01 | Ductile tearing | Alloy steels | VIE01 | Ageing | I&C | | DEC02 | Ductile tearing | Cast austenitic duplex stainless steel | VTH01 | Thermal Ageing | Carbon and low alloy steels | | DEC03 | Ductile tearing | Austenitic Stainless Steels of RVI | VTH02 | Thermal Ageing | Martensitic stainless steels | | DEF01 | Plastic Shakedow n | All steels | VTH03 | Thermal Ageing | Austenoferritic duplex cast stainless st | | ECA01 | Erosion Cavitation | all steels | VTH04 | Thermal Ageing | DMW - dilution / interface area | | ERO01 | Erosion | All materials | VTH05 | Thermal Ageing | Stainless steel w elds | ## Materials R&D Program in support of Ageing Management #### Steam generator #### **Sherlock Project:** In the frame of EDF R&D (Material Ageing Institute), 2 steam generators would be retired and examined in order to improve the understanding of ageing mechanisms. Sherlock will have an 8-year program of activities, called the "Core Program" that was developed by EDF R&D with external participation of utilities, organisations representing utilities, vendors and other companies in the nuclear industry. The extend of the examinations and samplings depends on: - Decontamination solutions - Feasibility to perform the examinations without degradation of the materials (due to decontamination and sampling) ## **Material Program**