

CHP Systems Analysis Methodology and Applications

Marcia L. Karr, PE WSU Energy Program

Halfmoon Education, Inc Portland, Oregon June 10, 2016

Energy Program

WASHINGTON STATE UNIVERSITY

WSU Energy Program

- Your unbiased energy experts
- National and regional experts on many energy technologies
- Entrepreneurial, nimble, and responsive
- Staff includes energy specialists, engineers, software developers, research librarians, and others
- Main office in Olympia, and another in Spokane
- We are part of the WSU College of Agricultural, Human, and Natural Resource Sciences – reporting directly to the Dean

Key Activities of CHP TAP

Market Opportunity Analysis:

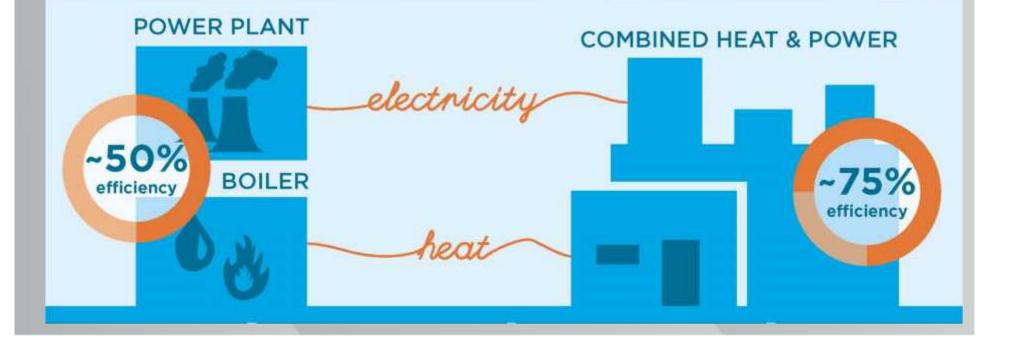
Analyze CHP market opportunities in industrial, federal, institutional, and commercial sectors.

Education and Outreach:

Provide information on the energy and nonenergy benefits and applications of CHP to state and local policy makers, regulators, energy endusers, trade associations, and others.

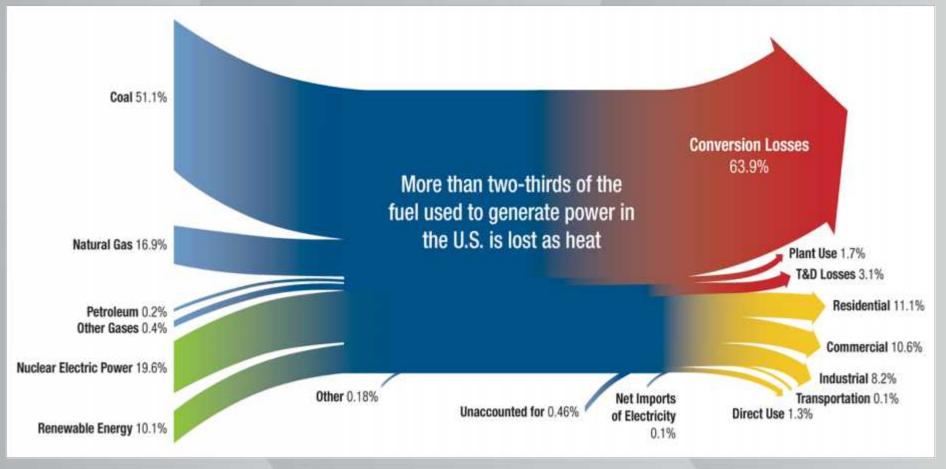
Technical Assistance:

Provide assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them navigate the project development process from initial CHP screening to installation.


Outline of Presentation

- Overview of CHP & benefits
- CHP technology & equipment
- Building codes
- Project development process & CHP Technical Assistance Partnership Services

Combined Heat and Power: A Key Part of Our Energy Future


- Located at or near a building or facility
- Provides at least a portion of the electrical load
- Uses thermal energy for:
 - Space heating/cooling
 - Process heating/cooling
 - Dehumidification

CHP provides efficient, clean, reliable, affordable energy – today and for the future.

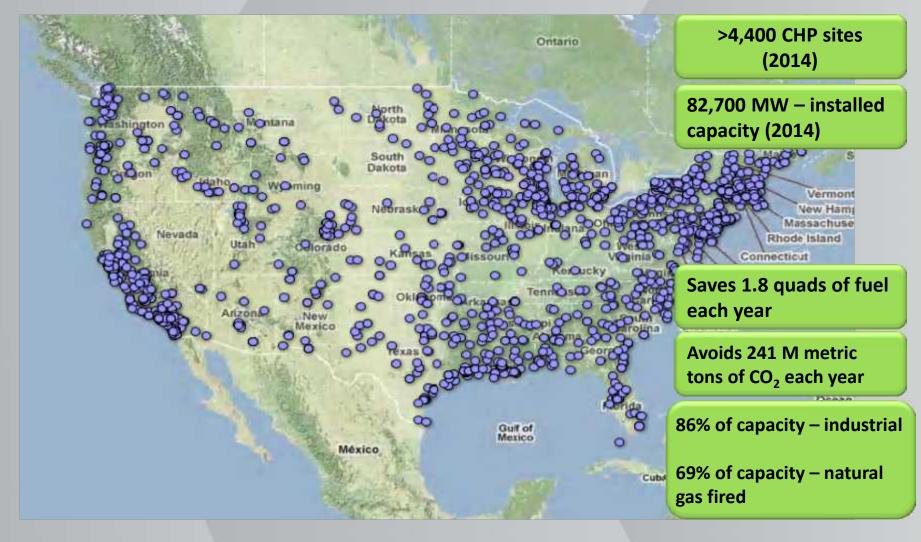
Combined Heat and Power: A Key Part of Our Energy Future

Over two-thirds of the fuel used to generate power in the U.S. is lost as heat

Benefits of Combined Heat and Power

- CHP is *more efficient* than separate generation of electricity and heat
- Higher efficiency translates to *lower operating cost*, (but requires capital investment)
- Higher efficiency *reduces emissions of all pollutants*
- CHP can also increase energy reliability and enhance power quality
- On-site electric generation *reduces grid congestion and avoids distribution costs*

National Goal: Additional 40 GW of CHP


Achieving this goal would:

- Increase total CHP capacity in the U.S. by **50%**
- Save energy users \$10 billion a year compared to current energy use
- Save **one quadrillion Btus** (Quad) of energy equivalent to 1% of all energy use in the U.S.
- Reduce emissions by 150 million metric tons of CO₂ annually

 equivalent to the emissions from over 25 million cars
- Result in **\$40-\$80 billion in new capital investment in manufacturing** and other U.S. facilities over the next decade

Source: DOE/EPA CHP: A Clean Energy Solution August 2012, www1.eere.energy.gov/manufacturing/distributedenergy/pdfs/chp_clean_energy_solution.pdf

CHP Projects Nationwide

Source: DOE CHP Installation Database (U.S. installations as of Dec. 31, 2014)

Attractive CHP Markets

Industrial

Chemical manufacturing Ethanol Food processing Natural gas pipelines Petrochemicals Pharmaceuticals Pulp and paper Refining Rubber and plastics

Commercial

Data centers Hotels and casinos Multi-family housing Laundries Apartments Office buildings Refrigerated warehouses Restaurants Supermarkets Green buildings

Institutional

Hospitals Schools (K-12) Universities & colleges Wastewater treatment Residential Correctional Facilities

Agricultural

Dairies Wood waste (biomass) Animal feeding operations

Prime Mover: Reciprocating Engines

- Size range: 10 kW to 18 MW
- Characteristics:
 - Thermal can produce hot water, low- pressure steam, and chilled water (through absorption chiller)
 - High part-load operation efficiency
 - Fast start-up
 - Minimal auxiliary power requirements for black start
- Example applications:
 - Food processing, office buildings, multifamily housing, nursing homes, hospitals, schools, universities, wastewater treatment

Source: DOE/EPA Catalog of CHP Technologies

Reciprocating Engine Characteristics

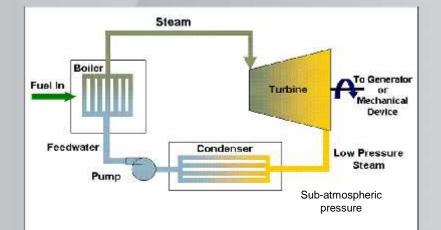
Cost & Performance Characteristics ¹⁴	System				
Cost & Performance Characteristics	1	2	3	4	5
Baseload Electric Capacity (kW)	100	633	1,121	3,326	9,341
Total Installed Cost in 2013 (\$/kW) 15	\$2,900	\$2,837	\$2,366	\$1,801	\$1,433
Electrical Heat Rate (Btu/kWh), HHV10	12,637	9,896	9,264	8,454	8,207
Electrical Efficiency (%), HHV	27.0%	34.5%	36.8%	40.4%	41.6%
Engine Speed (rpm)	2,500 ¹⁷	1,800	1,800	1,500 ¹⁸	720
Fuel Input (MMBtu/hr), HHV	1.26	6.26	10.38	28.12	76.66
Required Fuel Gas Pressure (psig)	0.4-1.0	> 1.16	> 1.74	> 1.74	75
CHP Characteristics					
Exhaust Flow (1000 lb/hr)	1.2	7.89	13.68	40.17	120
Exhaust Temperature (Fahrenheit)	1,200	941	797	721	663
Heat Recovered from Exhaust (MMBtu/hr)	0.21	1.48	2	5.03	10
Heat Recovered from Cooling Jacket (MMBtu/hr)	0.46	0.72	1.29	1.63	4.27
Heat Recovered from Lube System (MMBtu/hr)	Incl.	0.27	0.44	1.12	5.0
Heat Recovered from Intercooler (MMBtu/hr)	n/a	0.31	0.59	2.89	7.54
Total Heat Recovered (MMBtu/hr)	0.67	2.78	4,32	10.67	26.81
Total Heat Recovered (kW)	196	815	1,266	3,126	7857

Prime Mover: Combustion Gas Turbine

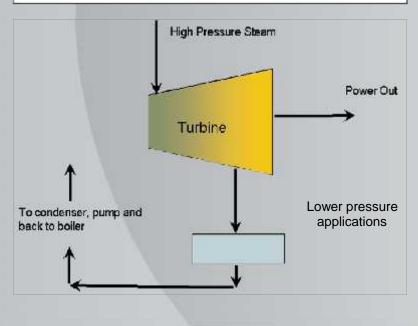
- Size range: 500 kW to 300 MW
- Characteristics:
 - Produces high-quality, high-temperature thermal that can include high-pressure steam for industrial processes; and chilled water (with absorption chiller)
 - Efficiency at part load can be substantially less than at full load
- Example applications:
 - Hospitals, universities, chemical plants, refineries, food processing, paper manufacturing, military bases

Gas Turbine Characteristics

Cost & Performance Characteristics		SYSTEM					
	1	2	3	4	5		
Exhaust Flow (1,000 lb/hr)	149.2	211.6	334	536	1047		
GT Exhaust Temperature (Fahrenheit)	838	916	913	874	861		
HRSG Exhaust Temperature (Fahrenheit)	336	303	322	326	300		
Steam Output (MMBtu/hr)	19.66	34.44	52.36	77.82	138.72		
Steam Output (1,000 lbs/hr)	19.65	34.42	52.32	77.77	138.64		
Steam Output (kW equivalent)	5,760	10,092	15,340	22,801	40,645		
Total CHP Efficiency (%) HHV	65.7%	70.4%	69.5%	70.5%	68.8%		
Power/Heat Ratio	0.57	0.7	0.65	0.89	1.09		
Net Heat Rate (Btu/kWh)	6,810	5,689	5,905	5,481	5,590		
Effective Electrical Efficiency (%)	50%	60%	58%	62%	61%		
Thermal Output as Fraction of Fuel Input	0.42	0.41	0.42	0.37	0.33		
Electric Output as Fraction of Fuel Input	0.24	0.29	0.27	0.33	0.36		


Heat Recovery Steam Generator (HRSG)

- Reduces cost of electricity
 - Up to 50% output without additional fuel consumption
- Reduces environmental footprint
 - Emissions reduced by at least 30% per MWh produced
- Increases flexibility and reliability
 - Hospitals, universities, chemical plants, refineries, food processing, paper manufacturing, military bases


Steam Turbines:

One of the oldest prime mover technologies still in use

- Condensing turbines:
 - Industrial waste heat streams can be used to produce steam
 - Excess steam can be used to produce electrical energy

- Backpressure turbine:
 - Produces electrical energy at locations where steam pressure is reduced with a PRV

Prime Mover: Microturbines

- Size range: 30 kW to 330 kW
- Characteristics:
 - Thermal can produce hot water, steam, and chilled water
 - Compact size and light weight, brought on line quickly
 - Inverter-based generation can improve power quality
 - Usually below 200 kW unless multiple units utilized
 - Recuperator typical
 - Example applications:
 - Multifamily housing, hotels, nursing homes, wastewater treatment, gas and oil production

Microturbine Characteristics

Microturbine Characteristics		SYSTEM						
	1	2	3	4	4	5	6	
Nominal Electricity Capacity (kW)	30	65	200	2	50	333	1000	
Compressor Parasitic Power (kW)	2	4	10	1	.0	13	50	
Net Electricity Capacity (kW)	28	61	190	24	40	320	950	
Fuel Input (MMBtu/hr)	0.434	0.876	2.431	3.1	L39	3.894	12.155	
Required Fuel Gas Pressure (psig)	55-60	75-80	75-80	80-	140	90-140	75-80	
Electric Heat Rate (Btu/kWh), LHV [2]	13,995	12,966	11,553	3 11,	809	10,987	11,553	
Electric Efficiency (%), LHV [3]	24.4%	26.3%	29.5%	5 2 8.	.9%	31.1%	29.5%	
Electric Heat Rate (Btu/kWh), HHV	15,535	14,393	12,82	4 13,	110	12,198	12,824	
Electric Efficiency (%), HHV	21.9%	23.7%	26.6%	2 6	.0%	28.0%	26.6%	
CHP Characteristics								
Exhaust Flow (Ibs/sec)		0.68	1.13	2.93	4.7	5.3	14.7	
Exhaust Temperature (°F)		530	592	535	493	512	535	
Heat Exchanger Exhaust Temperature (°F)		190	190	200	190	190	200	
Heat Output (MMBtu/hr)		0.21	0.41	0.88	1.28	3 1.54	4.43	

Source: ICF vendor-supplied data

Prime Mover: Fuel Cells

- Size range: 3 kW to 2 MW
- Characteristics:
 - Relatively high electrical efficiencies due to electrochemical process
 - Uses hydrogen as the input fuel
 - Relatively low emissions without controls due to absence of combustion process
 - Inverter-based generation can improve power quality
 - Relatively high installed cost, ~\$5k/kW
- Example applications:
 - Data centers, hotels, office buildings, wastewater treatment

Source: DOE/EPA Catalog of CHP Technologies

Fuel Cell Characteristics

	PEMFC	PAFC	MCFC	SOFC
Type of Electrolyte	H [⁺] ions (with anions bound in polymer membrane)	H ⁺ ions (H₃PO₄ solutions)	CO ₃ [™] ions (typically, molten LiKaCO ₃ eutectics)	O [™] ions (Stabilized ceramic matrix with free oxide ions)
Common Electrolyte	Solid polymer membrane	Liquid phosphoric acid in a lithium aluminum oxide matrix	Solution of lithium, sodium, and/or potassium carbonates soaked in a ceramic matrix	Solid ceramic, Yttria stabilized zirconia (YSZ)
Typical construction	Plastic, metal or carbon	Carbon, porous ceramics	High temp metals, porous ceramic	Ceramic, high temp metals
Internal reforming	No	No	Yes, good temp match	Yes, good temp match
Oxidant	Air to O ₂	Air to Enriched Air	Air	Air
Operational Temperature	150-180°F (65-85°C)	302-392°F (150- 200°C)	1112-1292°F (600- 700°C)	1202-1832°F (700- 1000°C)
DG System Level Efficiency (% HHV)	25 to 35%	35 to 45%	40 to 50%	45 to 55%
Primary Contaminate Sensitivities	CO, Sulfur, and NH3	CO < 1%, Sulfur	Sulfur	Sulfur

Source: U.S. DOE Fuel Cell Technologies Program

Fuel Cell Characteristics

Performance Characteristics	System 1	System 2	System 3	System 4	System 5
Fuel Cell Type	PEMFC	SOFC	MCFC	PAFC	MCFC
Nominal Electricity Capacity (kW)	0.7	1.5	300	400	1,400
Net Electrical Efficiency (%), HHV)	35.3%	54.4%	47%	34.3%	42.5%
Fuel Input (MMBtu/hr), HHV	0.0068	0.0094	2.2	4.0	11.2
Total CHP Efficiency (%), HHV	86%	74%	82%	81%	82%
Power to Heat Ratio	0.70	2.78	1.34	0.73	1.08
Net Heat Rate (Btu/kWh), HHV	9,666	6,272	7,260	9,948	8,028
Exhaust Temperature (°F)	NA	NA	700	NA	700
Available Heat (MMBtu/hr)	NA	NA	0.78 (to 120°F)	0.88 (to 140°F)	3.73 (to 120°F)
Sound (dBA)	NA	47 (at 3 feet)	72 (at 10 feet)	65 (at 33 feet)	72 (at 10 feet)

NA = not available or not applicable Source: ICF, specific product specification sheets

Approximating System Costs

Installed and O&M Cost Estimates:

CHP Prime Movers with Heat Recovery for Standard Installations

	Installed Costs	O & M Costs	
Reciprocating Engines	\$1,000 to \$1,800 per kW	\$0.010 to .015 per kWh	
Gas Turbines	\$800 to \$1,500 per kW	\$0.005 to \$0.008 per kWh	
Microturbines	\$1,000 to \$2,000 per kW	\$0.010 to \$0.15 per kWh	

Absorption chillers: \$500 to \$1,000/RT (dependent on size)

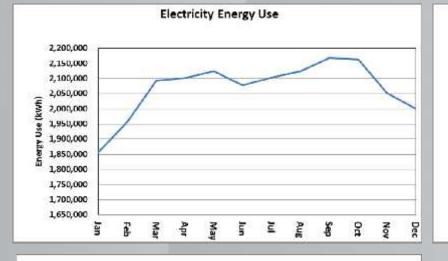
Thermal-to-Power Ratio (T/P) of Facility

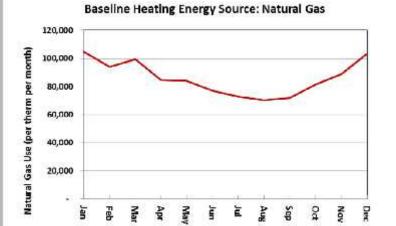
Determine what prime mover to select

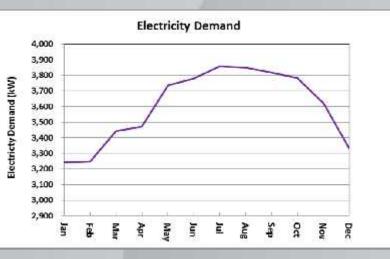
. Det	ermine Thermal Use		1
a.	Sum the number of Therms utilized over the last 12 months of bills: Total Therms	1,000,000	Therms
b.	Multiply the Total Therms by 100,000 to get Thermal Btu: Total Thermal Energy Purchased	100 * 10 ⁹	Btu
c.	Multiply the Total Thermal Energy Purchased by Boiler/Equipment Efficiency (typically 0.8) Total Thermal Energy Delivered/Used	80 * 10 ⁹	Btu
. Det	ermine Electrical Use		9 6
a.	Sum the number of kWh utilized over the <i>last 12 months</i> of bills: Total kWh	16,000,000	kWh
b.	Multiply the Total kWh by 3413 to get Btu Total Electric	55 * 10 ⁹	Btu
. Det	ermine T/P Ratio		
1	Divide Total Thermal (Btu) by Total Electric (Btu): T/P Ratio	1.46	

If T/P =	
0.5 to 1.5	Consider engines
1 to10	Consider gas turbines
3 to 20	Consider steam turbines

Sizing a Combined Heat and Power System


- Usually size for the base thermal load (which provides the highest efficiency and longest operation).
- Many commercial and institutional buildings seem to size best at ≈ 60% to 65% of peak electric demand
- Digester gas: Often considered "free gas" consider sizing for maximum electricity given available volume of digester gas (selling back to utility).


Chillers


Absorption or adsorption chillers can be incorporated into the existing central mechanical plant operations in many ways:

- Waste heat application
- Part of a combined cooling, heat, and power (CCHP or tri-generation) application
- As a stand-alone gas-fired absorption chiller application
- Using renewable solar as the heat source for the refrigeration cycle

Chillers

- As much as \$100,000/month in demand charges
- Summer months due to DX chillers
- Demand charge reduction possible with absorption chillers

Benefits of Chillers

- Reduce energy costs
- Stabilize risks associated with fluctuating energy costs
- Improve equipment reliability
- Reduce greenhouse gas emissions by up to 50% for the power generated
- Reduce grid congestion
- Reduce electrical demand charges
- Provide reliable power supply
- Use low global warming and ozone-safe natural refrigerants like R717 (NH₃) and R744 (CO₂), water and air, which are promoted through the LEED certification program, ASHRAE, EPA, DOE and GSA (CHP can be shown to offer 5-9 LEED points)

http://www.epa.gov/chp/treatment-chp-leedr-building-design-and-construction-new-construction-and-major-renovations

Meeting Cooling Requirements with Prime Mover Recoverable Heat

How much absorption cooling can be delivered from a prime mover? How much electricity is offset by an absorption chiller?

	Capacity Range (kW)	Single-Effect	Double-Effect
	COP	0.6-0.67	0.9-1.2
(LiBr-H ₂ 0)	Heat Source Minimum Temperature, °F Hot Water Flow Rate, Ibs/h per RT Steam Flow Rate, Ibs/h per RT Steam Pressure, psig	180 1,000 18 15	350 400 10-11 115-125
Chillers (Li	Integration w/ Waste Heat from: Reciprocating engines, RT/kW Combustion turbines, RT/kW Microturbines, RT/kW	0.22 - 0.28 0.28 - 0.33 0.33 - 0.45	0.3-0.4 0.4-0.5 NA
	Average Electric Power Offset	0.6kW/RT	0.6kW/RT
Absorption	Installed Cost (\$/RT) 100 RT 500 RT 1,000 RT 2,000 RT	1000 700 650 500	1200 900 850 700
	O&M Costs (\$/RT/yr) 100 RT 500 RT- 2,000 RT	30 16-28	30 17-25

Codes that Apply to Using Natural Gas as a Fuel Source

- International Building Code (IBC) Chapter 27
- National Fire Protection Association (NFPA) 99 & 110
- National Electrical Code (NEC) Articles 700 & 701
- Center for Medicare and Medicaid Services (CMS) define "low probability of failure"

International Building Code Ch. 27 Related Definitions

Emergency

- Voice communication
- Exit signs
- Egress illumination
- Doors on I-3
- Elevator car lighting
- Fire detection and alarms
- Fire pumps

Standby

- Smoke control
- Egress elevators/platforms
- Sliding doors
- Inflation for membrane structures
- Power & lighting for fire command

NFPA 99

6.4.1.1.7 Uses for Essential Electrical System

The generating equipment used shall be either reserved exclusively for such service or normally used for other purposes of peak demand control, internal voltage control, load relief for the external utility, or cogeneration.

NFPA 110.5.1 Energy Sources

5.1.1 The following sources* shall be permitted to be used for the emergency power supply (EPS):

- Liquid petroleum products at atmospheric pressure as specified in the appropriate ASTM standards and as recommended by the engine manufacturer
- Liquefied petroleum gas (liquid or vapor withdrawal) as specified in the appropriate ASTM standards and as recommended by the engine manufacturer
- Natural or synthetic gas

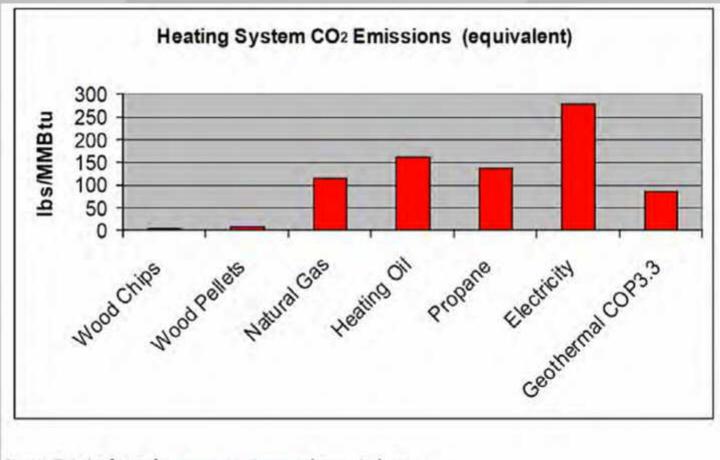
* Explanatory material can be found in Annex A of the NFPA codes

NEC Article 700 & 701 Emergency and Standby Fuel

"Article 700-12 (b)(3) Dual Supplies. Prime movers shall not be solely dependent on a public utility gas system for their fuel supply or municipal water supply for their cooling systems. Means shall be provided for automatically transferring from one fuel supply to another where dual fuel supplies are used.

Exception: Where acceptable to the authority having jurisdiction, the use of other than on-site fuels shall be permitted where there is a **low probability of a simultaneous failure** of both the off-site fuel delivery system and power from the outside electrical utility company.

Center for Medicare & Medicaid Services (CMS) - Low Probability of Failure Defined


Natural Gas Generator Reliability Letter Requirements:

- Statement of reasonable reliability of the natural gas delivery
- Brief description that supports the statement regarding the reliability
- Statement that there is a low probability of natural gas interruption
- Brief description that supports the statement regarding the low probability of interruption
- Signature of technical personnel from the natural gas vendor

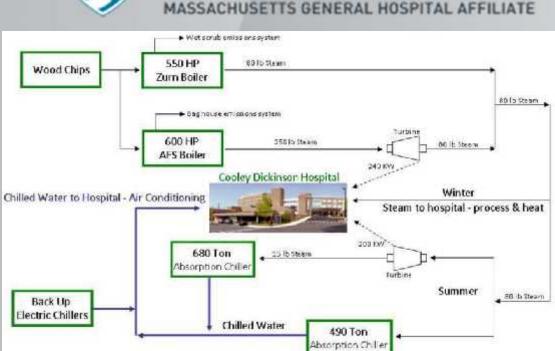
Sources: CMS 2009 presentation

http://chfs.ky.gov/NR/rdonlyres/4C745EDB-C9D8-4AA9-B111-38092C60EFB4/0/NaturalGasGenerators.pdf

Fuel Emissions

Source: Emission factors from www.nyserda.org and www.ela.doe.gov

Project Snapshot


Cooley Dickinson Health Care Northampton, MA

Application/Industry: Hospitals Capacity (MW): 500 KW Prime Mover: Steam Turbine(s) Fuel Type: Wood chips Thermal Use: Heat and hot water Installation Year: 2006

Testimonial: This SECOND biomass boiler eliminated the need to burn oil during annual maintenance downtime, reduces peak load by 17.5%, and produces approx. 2 million kWh electricity per year. The plant also has full utility company interconnectivity and operates in parallel with the electrical grid.

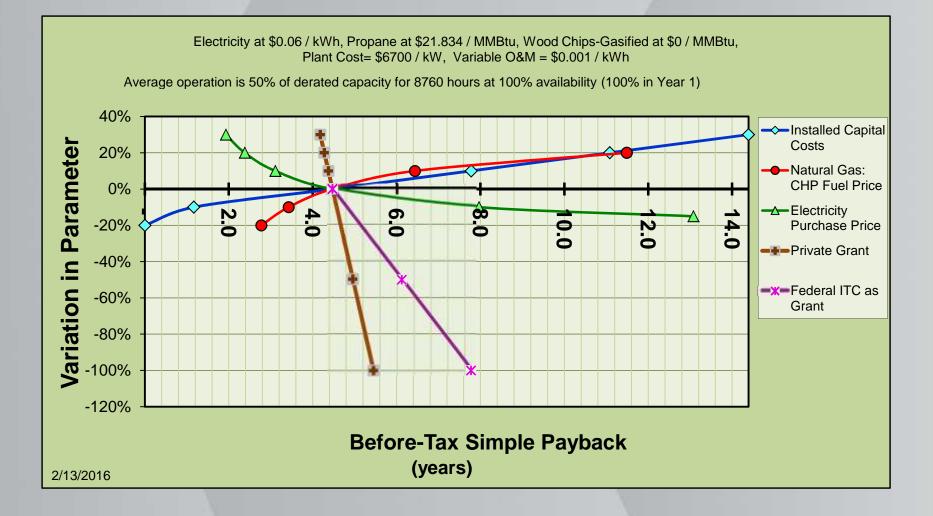
COOLEY DICKINSON HEALTH CARE

Source: http://www.northeastchptap.org/Data/Sites/5/documents/profiles/CooleyDickinsonCaseStudy.pdf

Steps to Solving the Problem

Determine

- Average electric demand
- Average price of purchased electricity
- Average natural gas consumption
- Average price of natural gas


Then

- Size the CHP system: match electric loads and match thermal loads
- Determine energy savings, installed costs, and simple payback

Considerations of Example Problem

- What is this solution telling me?
- What other factors need to be considered?
 - Credit for backup generation
 - Carbon credits
 - Government grants
 - Tax credits (federal/state)
 - Utility Incentives
- Energy Price Sensitivity Analysis
 - 10% electric increase = 4.6 year payback
 - 20% electric increase = 3.6 year payback
 - 10% natural gas increase = 7.8 year payback
 - 20% natural gas increase = 10.4 year payback
 - 10% electric <u>AND</u> 10% natural gas increase = 5.4 year payback

Sample Sensitivity Diagram

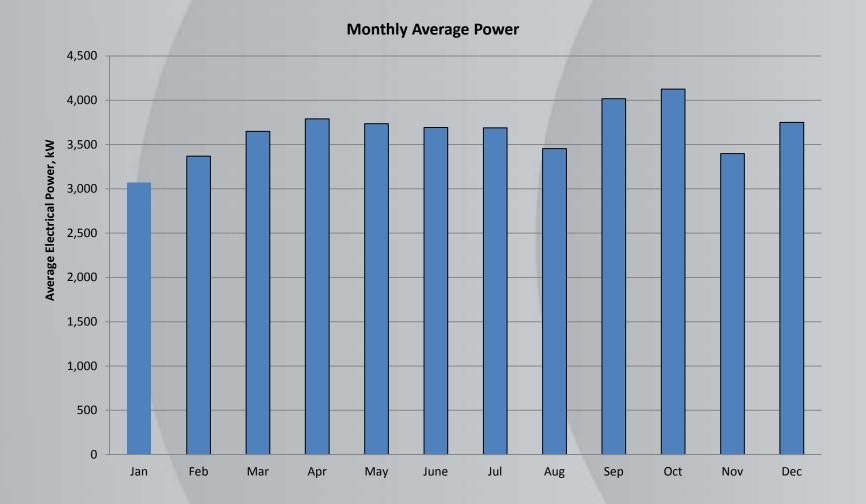
Summary: When Looking at Your Facility, Consider...

- Is there a use for the CHP waste/recycled heat?
- Is a major rehab or thermal equipment change planned?
- Is there sufficient "spark spread"?
- Identify size and type of prime mover to meet thermal requirements (high efficiency).

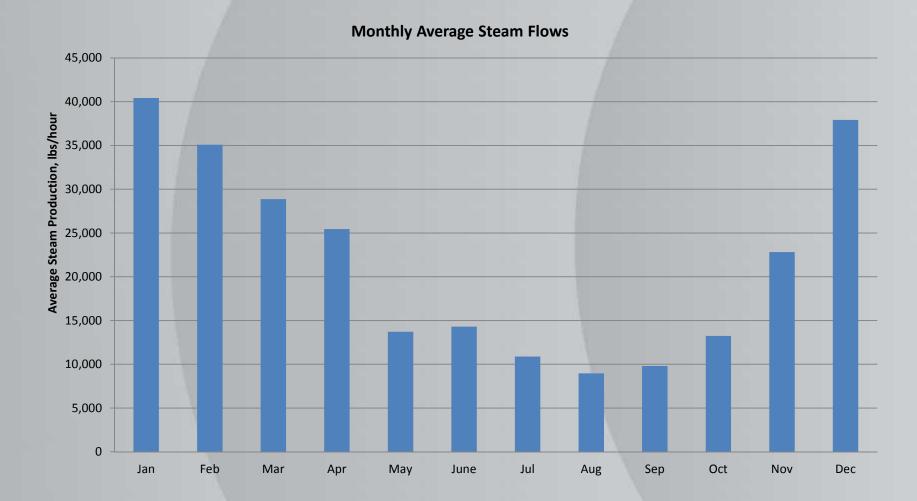
- Will the selected configuration provide adequate waste heat levels for heating and/or cooling?
- Are there potential installation issues?
- Estimated installation costs?
- What do basic economics look like?

Is the application worth pursuing with a formal analysis?

Annual Energy Use Summary Sample

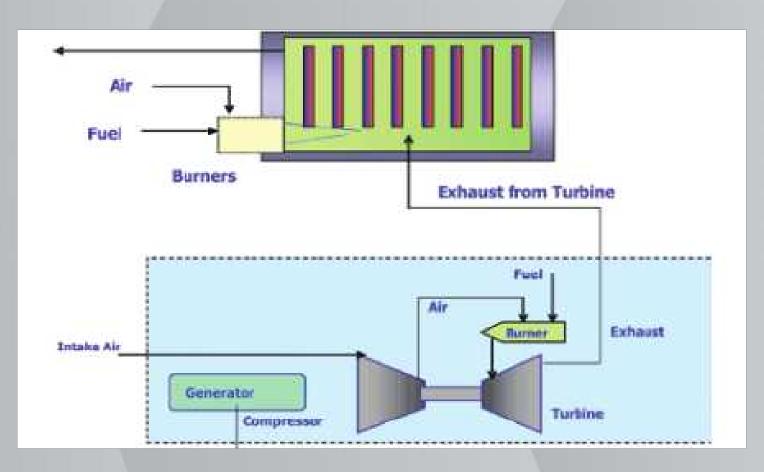

University								
University								
							•• •	
	Electricity	Electricity		Electricity	Natural Gas	Natural Gas	Natu	ral Gas
Month	(kWh)	(\$)		(\$/kWh)	(\$)	(therms)	(\$/Ⅳ	IMBtu)
Jan15	2,286,840	\$ 222,981	\$	0.098	\$ 302,095	346,440		8.72
Feb	2,502,133	\$ 243,245	\$	0.097	\$ 237,035	271,830		8.72
Mar	2,714,835	\$ 261,044	\$	0.096	\$ 215,854	247,540		8.72
Apr	2,728,199	\$ 263,761	\$	0.097	\$ 184,201	211,240		8.72
May	2,779,795	\$ 267,913	\$	0.096	\$ 102,573	117,630		8.72
Jun	2,658,494	\$ 255,518	\$	0.096	\$ 49,064	118,600		4.14
Jul	2,744,758	\$ 265,473	\$	0.097	\$ 38,598	93,300		4.14
Aug14	2,569,171	\$ 239,037	\$	0.093	\$ 31,797	76,860		4.14
Sep	2,892,800	\$ 260,233	\$	0.090	\$ 70,902	81,310		8.72
Oct	3,069,088	\$ 271,540	\$	0.088	\$ 99,050	113,590		8.72
Nov	2,446,105	\$ 230,129	\$	0.094	\$ 165,156	189,400		8.72
Dec	2,790,018	\$ 262,327	\$	0.094	\$ 283,574	325,200		8.72
	32,182,236	\$3,043,201		\$0.095	\$1,779,899	2,192,940	\$	8.12

Costs of Natural Gas vs. Value of Electrical Energy


- \$0.095/kWh = \$27.8/MMBtu
- Natural gas at \$4.11/MMBtu = steam at \$4.11
 - (85% boiler efficiency) = \$4.83/MMBtu
- "Spark Spread" is \$22.97/MMBtu

Conclusion: Most of a CHP project's revenue stream comes from the production of electrical energy.

Monthly Average Power Electrical Load Profile


Monthly Average Steam Flows Steam Flow Profile

CHP Prime Mover Selection

- Gas turbine with heat recovery steam generator HRSG (to qualify as CHP)
 - Usually use natural gas as fuel, but can run on oil
 - Can add duct burner and even OSA firing capability to HRSG
- Backpressure, condensing, or condensing/extraction steam turbines
- Combined cycle project (Brayton plus Rankine cycles)
- Reciprocating engines
- Bottoming cycle power plants (organic Rankine for waste heat recovery). [Fouling, corrosion, erosion]

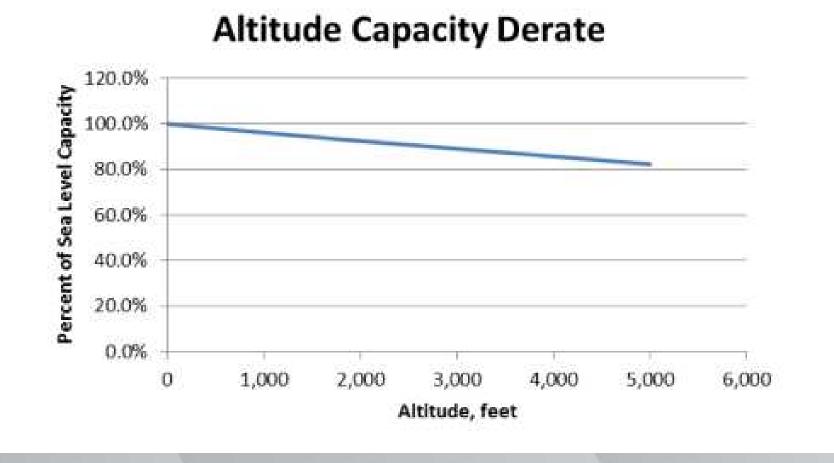
Gas Turbine with HRSG

Lower Heating Value (LHV)

- Gas turbines are rated at ISO conditions (59°F at sea level, and 60% relative humidity)
- The firing rate (MMBtu/hour) and heat rate (Btu/kWh) are given in terms of lower heating value (LHV)
- Fuel (natural gas or oil) is sold on the basis of its higher heating value (HHV).

LHV, continued

- The LHV assumes that the latent heat of vaporization of water in the fuel and the reaction products is not recovered. It is useful when comparing fuels and turbine performance where condensation of the combustion products is impractical.
- Higher heating value (HHV) assumes that all of the water in a combustion process is in a liquid state after a combustion process.
- For natural gas, fuel consumption (HHV) ≅ fuel consumption (LHV)/0.9.


Turbine Selection/Coverage Charts

GAS TURBINE OVERVIEW GAS TURBINE PACKAGES

Solar builds complete turbomachinery packages that are ready to go to work in o matter where the job might be worldwide. Solar designs and i packages under various quality systems ensuing the highest reliability.

Compressor Sets					
Power Range, hp (Thousands)	Shaft	1	5	10	
Saturn 20	Two				
Centeur 40	Two				
Centeur 50	Two				
Faurus 60	Two				
Faurus 70	Two				
Aars 90	Two			1.6	

Gas Turbine Capacity Rating for Altitude and Temperature

Source: U.S. EPA "Catalog of CHP Technologies," March 2015

Solar Turbines

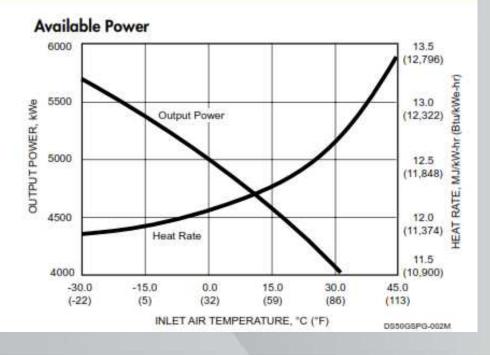
A Caterpillar Company

CENTAUR 50 Gas Turbine Generator Set

Power Generation

General Specifications Centeur® 50 Cas Turbine

Power Generation


Performance

Output Power	4600 kWe
Heat Rate	12 270 kJ/kWe-hr (11,630 Btu/kWe-hr)
Exhaust Flow	68 680 kg/hr (151,410 lb/hr)
Exhaust Temp.	510°C (950°F)

Application Performance

Steam (Unfired)	11.5 tonnes/hr (25,280 lb/hr)
Steam (Fired) 1536°C (2800°F)	50.4 tonnes/hr (111,190 lb/hr)
Chilling (Absorp.)	9890 kW (2810 refrigeration tons)

Nominal rating - per ISO At 15°C (59°F), sea level

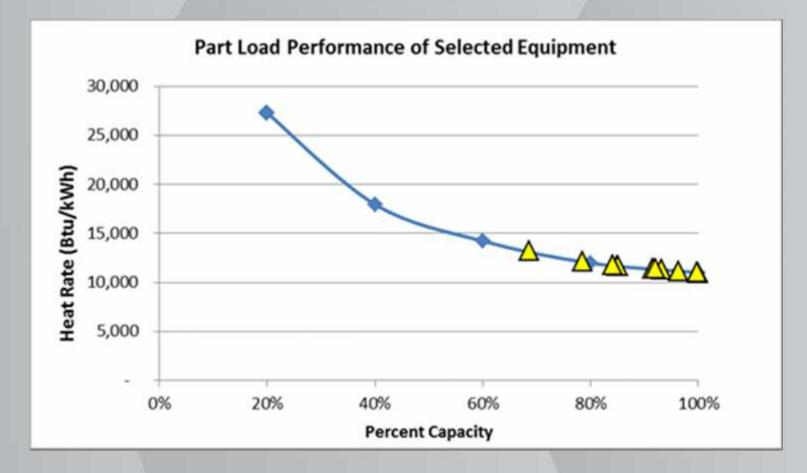
Solar Centaur

Gas Turbine:	
KW Gross Output @ ISO Conditions:	4,600 kW
Sile Ambient Temperature for Performance Analysis.	59 °F
Site Elevation for Performance Analysis:	3,209 feet
Site Ambient Relative Humidity for Performance Analysis:	60 %
Turbine Inlet Pressure Loss:	4.0 "H2O
Turbine Outlet Pressure Loss:	10.0 "H2O
Turbine Fuel Consumption @ specified site conditions (LHV):	47.0 MMBtu/hr
KW Gross Output @ specified site conditions:	3,916 KW
Condensate Pump Power	1 4 kW
Boiler Feed Pump Power:	15.2 kW
Total Auxiliary Power Consumption	27 kW
Net Gas Turbine Power Production.	3,889 kW
Black Start kW Requirement (Turbine Generator Set Only)	200 kW
Boiler:	
Condensate Return:	60 %
Condensate Temperature:	212 °F
Makeup Water Temperature	70 °F
Process Steam Pressure:	175.0 psig
Process Steam Temperature:	377 °F
Steam Contributed by Gas Turbine	21,094 lbm/hr

Off-Design Performance

Solar Centaur

CENTAUR 50 16200S Natural Gas

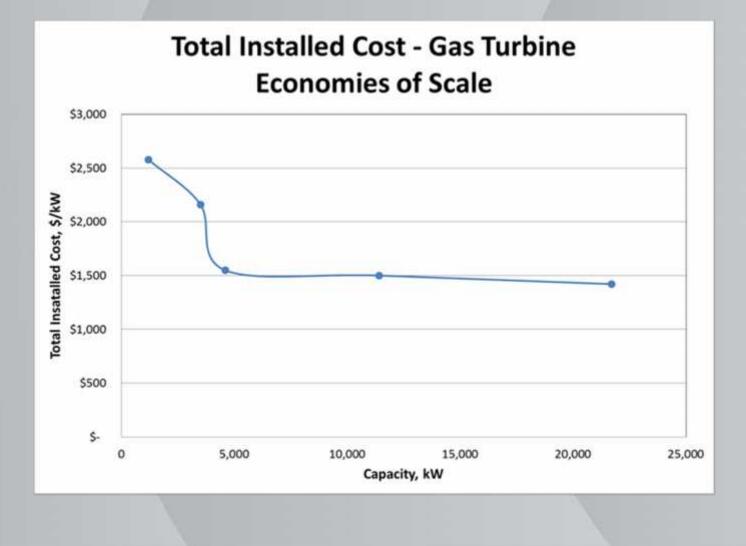

					9	HP Off Desig	ņ
						Incl Ductburner	
				# of Turb	ines in Service	1]
				Process :	Steam Demand	40,315	lbm/hr
		302		Unfir	ed Steam Flow	21,169	lbm/hr
Site Elevation:	3,209	feet		lv.	lax Steam Flow	40,259	Ibm/hr
Barometric Pressure:	26.57	"Hg		Firin	g Temperature	1,435	°F
Inlet Duct Loss:	4.0	"H2O		Duct Bu	inner Fuel Flow	18.4	MMBtu/hr
Exhaust Duct Loss:	10.0	"H2O		í če	elative Humidity	60	%
Ambient Temperature (T1):	59.0	23.0	34.0	44.0	72.0	64.0	°F 🧲
Part Power (kWe), % Load, or 0 for Max	0	0	0	0	0	0.0	kWe
Engine Inlet Air Temperature (T1):	59.0	23.0	34.0	44.0	72.0	64.0	°F
Nominal Output Power @ Terminals:	3,916	4,364	4,232	4,116	3,715	3,980	kWe
Fuel Flow (LHV)	47.0	51.3	50.0	48.9	45.2	47.6	MMBtu/hr
Inlet Air Flow:	130,677	139,697	137,332	135,013	126,499	132,092	lbm/hr
Exhaust Gas Temperature (T7):	959	942	942	946	967	955	°F 🦯
Exhaust Gas Mass Flow:	132,956	142,187	139,760	137,384	128,692	134,400	lbm/hr
Exhaust Gas Volumetric Flow:	33,856	36,228	35,601	34,990	32,784	34,203	SCFM
Nominal Electrical Efficiency @ Terminals	28.5	29.0	28.9	28.8	28.1	28.5	%
Nominal Electrical Heat Rate @ Terminals	11,994	11,755	11,820	11,871	12,165	11,965	Btu/kWHR
Exhaust Heat Captured:	24.6	26.7	26.2	24.9	24.1	24.7	MMBtu/hr
% Argon, wet:	0.9	0.9	0.9	0.9	0.9	0.9	
% CO2, wet:	3.0	3.1	3.0	3.0	3.0	3.0	
% H ₂ O, wet:	6.4	6.6	6.6	6.6	6.4	6.3]
% N ₂ , wet:	75.3	76.3	76.3	75.3	75.3	75.4	
% Oxygen, wet:	14.4	14.2	14.3	14.3	14.4	14.4	1
		27		Net CHP Syste	m Efficiency =	86.1	% (LHV)

Off-Design Performance Solar Mercury Recuperated Gas Turbine

				ral Gas			
			NAIG	unit conta			
					ç	HP Off Desig	n
						Incl Ducthumer	
				# of Turb	ines in Service	1	1
				Process 3	Steam Demand	40,315	lbm/hr
				Unfit	ed Sleam Flow	10,114	lbm/hr
Site Elevation:	3,209	feet		N	lax Steam Flow	40,227	lbm/hr
Barometric Pressure:	26.57	"Hg		Firing Temperature		1,509	°F
Iniet Duct Loss:	4.0			Duct Burner Luci Llow			MMBtu/hr
Exhaust Duct Loss:	7.0	"H2O		Re	alative Hurmdity.	60	96
Ambient Temperature (T1):	59.0	23.0	34.0	44.0	72.0	54.0	°F
Part Power (kWe), % Load, or 0 for Max	0	0	0	0	0	0.0	kWe
Engine Inlet Air Temperature (T1):	59.0	23.0	34.0	44.0	72.0	64.0	°F
Nominal Output Power @ Terminals:	3,941	4,497	4,368	4,188	3,712	4,021	kWe
Fuel Flow (LHV)	35.8	38.9	38.5	37.4	34.4	36.3	MMBtu/hr
Inlet Air Flow:	122,458	131,088	130,120	126,973	118,389	123,938	lbm/hr
Exhaust Gas Temperature (T7):	695	653	669	679	708	690	^F
Exhaust Gas Mass Flow:	124, 195	132,977	131,990	128,785	120,055	126,699	lbm/hr
Exhaust Gas Volumetric Flow:	31,462	33,698	33,446	32,629	30,408	31,823	SCFM
Nominal Electrical Efficiency @ Terminals	37.6	39.4	38.7	38.3	36.9	37.8	%
Nominal Electrical Heat Rate @ Terminals	9,083	8,655	8,818	8,919	9,254	9,030	Btu/kWHR
Exhaust Heat Captured:	14.2	13.7	14.2	14.2	14.1	14.2	MMBtu/hr
% Argon, wet:	0.9	0.9	0.9	0.9	0.9	0.9	
% CO2, wet:	2.4	2.5	2.5	2.5	2.4	2.6	
% H ₂ O, wet:	5.4	5.5	5.4	5.4	5.4	5.3	
% N ₂ , wet:	75.7	75.7	75.7	75.7	75.7	75.8	1
% Oxygen, wet:	15.5	15.5	15.5	15.5	15.6	15.6	
				Net CHP Syste	m Efficiency =	86.8	% (LHV)

MERCURY 50-6400R

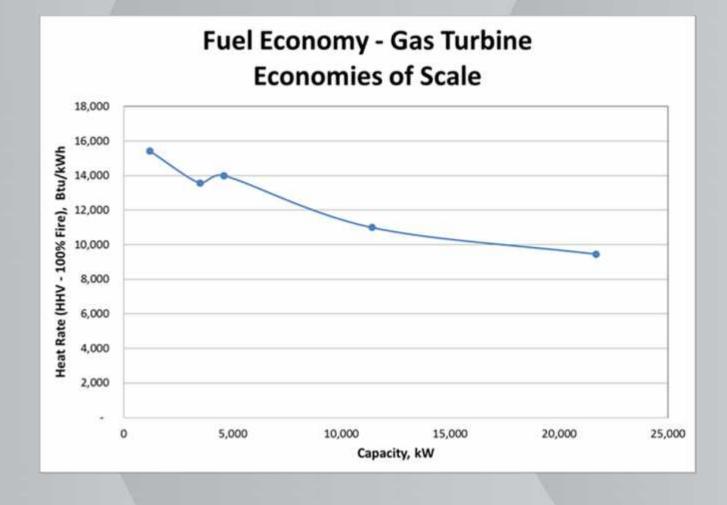
Part-Load Efficiency


Temperature, elevation, and part load affect performance/cost

Economies of Scale

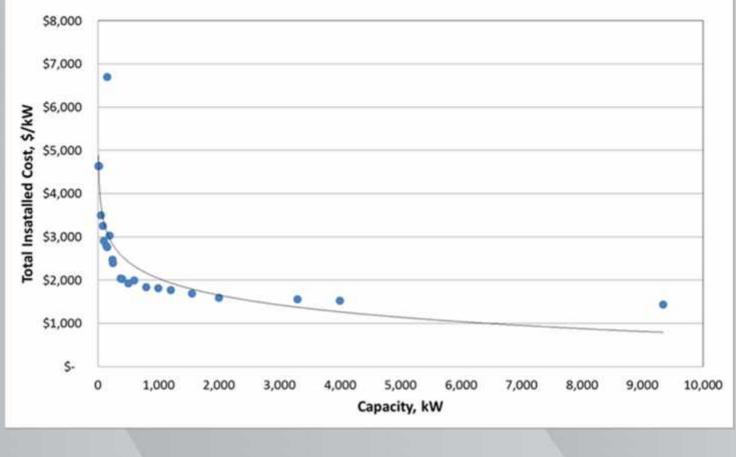
- Total installed cost, \$/kW
- Heat rate, Btu/kWh
- Transport gas availability and cost

Economies of Scale


Gas Turbine Costs

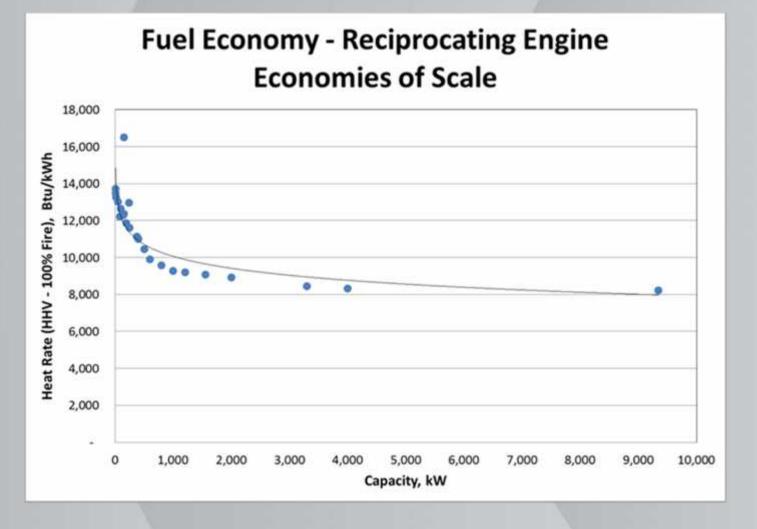
57

Heat Rates


Full Fire vs. Gas Turbine Rating

Economies of Scale

Reciprocating Engine Gensets


Total Installed Cost - Reciprocating Engine Economies of Scale

59

Heat Rate

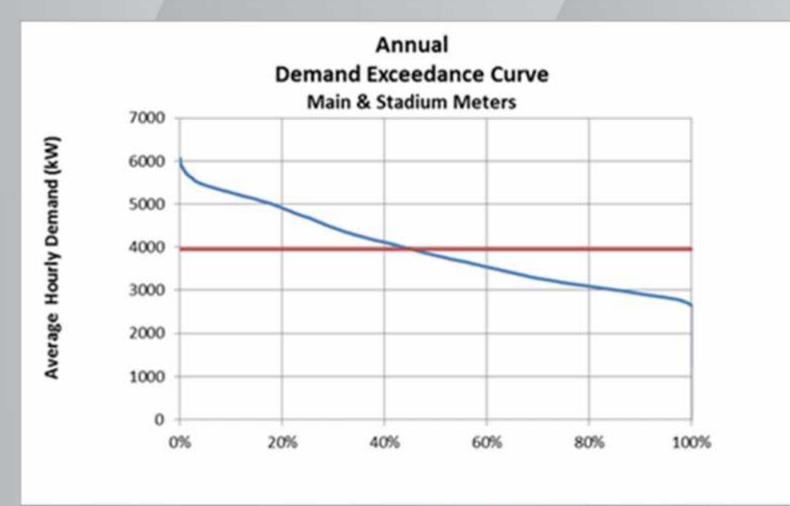
Rated Capacity vs. Power Rating

60

Cost Estimate for CHP Project Example

Gas Turbine Equipment	
(1) Natural Gas Fuel, Mercury 50 SoLoNOx Turbine Generator Set.	\$4,500,000
Commissioning Parts, Startup, and Site Testing	\$191,500
Electrical Equipment	
No Additional Electrical Equipment Included	
Mechanical Equipment	
1 Heat Recovery Steam Generator with ductburners \$1,524,000	
HRSG Options. none selected	
Total for Heat Recovery Steam System	\$1,524,000
Miscellaneous	
Construction Estimate	by others
Project Management & Engineering (Loose Ship Equipment Only)	\$106,600
Shipping	\$93,300
0% Balance of Plant Contingency	\$0
Total for BOP Equipment (installation not included)	\$1,723,400
Grand Total for Turbomachinery and Balance of Plant	\$6,414,900
Estimation of cost per ISO rating kilowatt for selected equipment	\$1,394
FSA Cost per Month (Only Turbomachinery Covered)	\$60,360

Steam Consumption Average Monthly by Hour

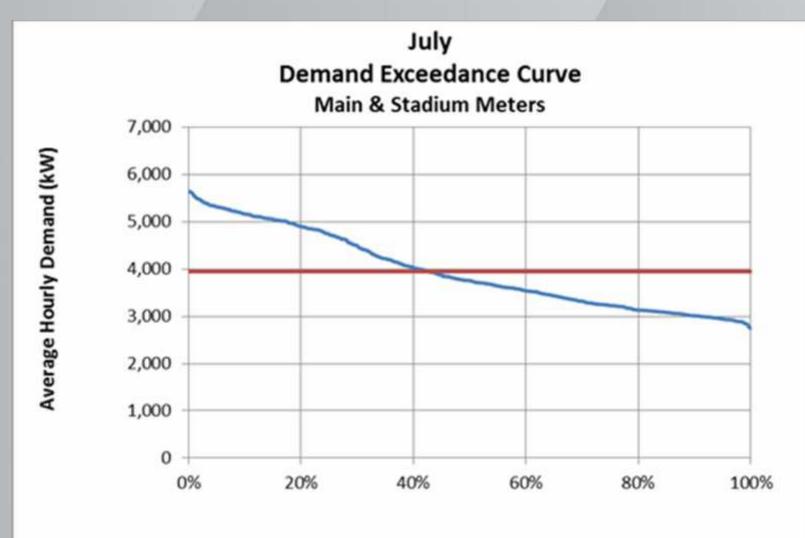

Row Labels	- 200 TVB DC 200 CB CC 200	Average of 3:00 AM	Average of 6:00 AM	Average of 9:00 AM	Average of Noon	Average of 3:00 PM	Average of 6:00 PM	Average of 9:00 PM
⊜Jan								
Weekday	27,330	27,858	29,129	29,437	27,992	26,362	27,535	27,463
Weekend	26,746	26,916	28,129	28,150	26,680	24,772	25,424	26,089
🗄 Feb	23,427	23,655	26,228	28,323	24,878	22,069	23,282	24,356
🖲 Mar	19,382	19,974	23,092	26,377	21,173	17,408	17,433	18,680
⊕Apr	16,222	17,171	19,501	22,588	17,646	14,860	14,649	15,285
May	10,873	11,645	14,141	15,543	12,141	10,756	10,309	10,724
⊛Jun	7,231	7,629	8,635	8,799	8,195	7,580	7,248	6,908
∋Jul	6,719	6,868	7,741	8,247	7,543	7,111	7,019	6,645
B Aug	6,827	6,886	7,830	8,376	7,914	7,202	6,920	6,694
⊛ Sep	9,346	8,846	10,567	14,085	10,788	9,552	9,304	9,739
3 Oct	12,948	12,579	14,983	19,141	15,199	12,324	12,070	13,164
Nov	21,903	21,429	23,668	26,743	24,003	21,855	23,347	22,862
🗄 Dec	26,309	26,327	27,684	28,760	28,527	27,328	27,680	27,382
Overall Average	15,761	15,936	17,776	19,708	17,204	15,383	15,588	15,871

Seasonality of Steam Generation

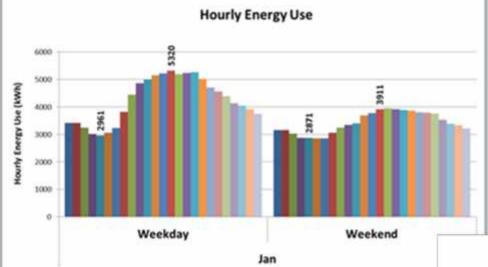
Monthly Averages by Day and Hour

Row Labels	Average of Midnight	Average of 3:00 AM	Average of 6:00 AM	Average of 9:00 AM	Average of Noon	Average of 3:00 PM	Average of 6:00 PM	Average of 9:00 PM
∃Jan	8 -111						an a third and a second	5 6 M.
Weekday	27,330	27,858	29,129	29,437	27,992	26,362	27,535	27,463
Monday	25,588	26,346	27,927	28,916	26,850	25,464	26,857	26,554
Tuesday	25,146	27,068	29,362	29,661	26,144	23,937	26,725	25,530
Wednesday	25,723	26,928	29,572	29,538	27,369	25,838	27,289	28,816
Thursday	29,558	29,663	29,501	29,500	29,600	28,768	29,367	29,357
Friday	29,196	29,354	29,690	29,516	29,128	26,685	27,508	26,948
Tuesday	26,800	23,500	26,800	29,739	26,889	25,690	24,645	24,594
⊟ Weekend	26,746	26,916	28,129	28,150	26,680	24,772	25,424	26,089
Sunday	26,606	26,597	27,118	27,735	25,357	23,237	24,846	24,474
Saturday	26,8 <mark>5</mark> 7	27,171	28,938	28,482	27,739	26,000	25,886	27,380
Jul								
Weekday	6,759	7,002	8,046	8,613	7,788	7,298	7,154	6,732
Monday	6,630	7,291	7,413	8,746	8,459	7,701	7,673	7,034
Tuesday	7,107	7,213	7,911	8,814	8,133	7,172	7,198	7,023
Wednesday	6,568	6,953	8,198	8,370	7,601	7,531	7,533	6,418
Thursday	6,936	6,924	8,362	8,597	7,396	6,951	7,301	6,277
Friday	6,600	6,730	8,193	8,606	7,554	7,191	6,178	7,026
Weekend	6,603	6,481	6,866	7,192	6 <mark>,84</mark> 0	6,573	6,631	6,396
Sunday	6,565	6,320	6,688	7,217	6,996	6,754	7,165	6,543
Saturday	6,642	6,642	7,043	7,168	6,683	6,392	6,097	6,248

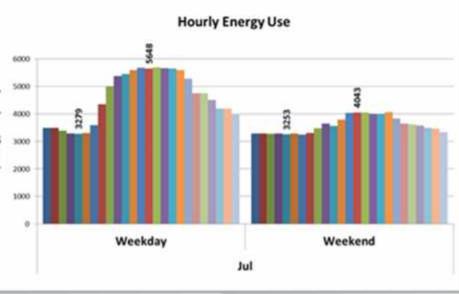
Exceedance Curve for Electrical Energy Purchases



Exceedance Curve Electrical Consumption – January


January Demand Exceedance Curve Main & Stadium Meters 7,000 Average Hourly Demand (kW) 6,000 5,000 4,000 3,000 2,000 1,000 0 0% 20% 40% 60% 80% 100%

Exceedance Curve


Electrical Consumption – July

Hourly Average Electrical Energy Use Seasonality Comparison

Hourly Evergy Uve (MM)

Assessment Tools

- CHP System Selection Analysis
- Steam Turbine Monthly Analysis
- Greenhouse Gas (GHG) Emissions Analysis
- RelCost Financial Analysis

Washington State University Energy Program

Go Cougs!

Thank You! Questions?

Contact information:

Marcia L. Karr, PE 360-956-2144 <u>karrm@energy.wsu.edu</u>

David Sjoding, Director 360-956-2004 <u>sjodingd@energy.wsu.edu</u>

Emissions Reduction Calculators

CHP Results

The results generated by the CHP Emissions Calculator are intended for eductional and outreach purposes only, it is not designed for use in developing emission inventories or preparing air permit applications.

Annual Emissions Analysis											
	CHP System	Displaced Electricity Production	Displaced Thermal Production	Emissions/Fuel Reduction	Percent Reduction						
NOx (tons/year)	43.74	22.83	59.06	38.15	47%						
SO2 (tons/year)	0.02	53.95	1.53	55.46	100%						
CO2 (metric tons/year)	67,226	22,818	63,514	19,107	22%						
Carbon (metric tons/year)	18,334	6,223	17,322	5,211	22%						
Fuel Consumption (MMBtu/year) (HHV)	1,250,232	280,394	1,181,209	211,372	14%						
Acres of Forest Equivalent				5,211							
Number of Cars Removed				3,257							

This reduction is equal to removing the carbon emissions of 3,257 cars

Steam Turbine Calculator

U.S. DOE Office of Energy Efficiency and Renewable Energy

Two common methods for using the Steam Turbine Calculator

- Calculate steam turbine (generator) power, given:
 - Inlet pressure
 - Inlet temperature
 - Steam flow
 - Exhaust pressure This is the most typical method when calculating ST output
- Calculate steam flow, given:
 - Inlet pressure
 - Inlet temperature
 - Exhaust pressure
 - Desired power (kWe)

Backpressure Turbine Isentropic Efficiency Defaults

Table 2: Estimated Isentropic Efficiencies of Steam Turbines

Turbine Type	Exhaust Type	Average (%)
Single Stage	Back Pressure	53
Single Stage	Condensing	57
Multi-Stage <10 MW	BackPressure	60
Multi-Stage <10 MW	Condensing	67
Multi-Stage > 10 MW	Back Pressure	75
Multi-Stage > 10 MW	Condensing	80

Note: Isentropic efficiencies of Steam Turbines can range from 20-90%. The efficiencies in Table 1 are simplified values for the purpose of estimating industrial type Steam Turbine Generators. For firm performance values please contact the <u>Power Generation Team at Elliott Group</u>.

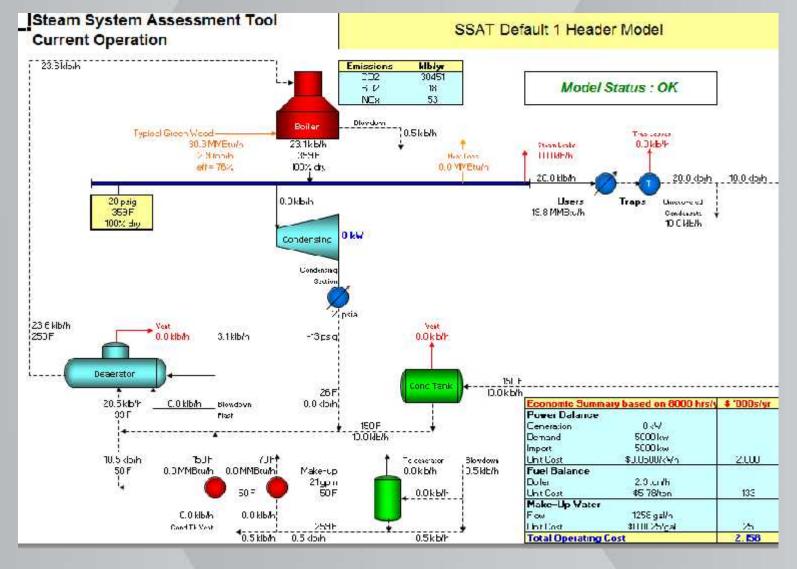
Steam Properties Calculator

bout Saturated Superheated/Subcooled			
Independent Variable:	Units:	Clos	e
C Temperature	_ C Metric/SI		-
Value, psia 314	English	Calcul	late
Phase:			
Vapor C Liquid C Two	-phase		
Property	Value	Unit	
Temperature	421.557	۴F	-
Pressure	314	psia	
Steam quality	100	2/0	Ξ
Volume	1.47596	ft³/lb	
Density	0.677524	lb/ft ³	
Compressibility factor	0.882874	dimensionless	
Enthalpy	1203.71	Btu/lb	
Entropy	1.50706	Btu/(b.°F)	
Helmoltz free energy	-210.113		
Internal energy	1117.94	Btu/lb	
Gibbs free energy	-124.352	Btu/lb	
Heat capacity at constant volume	0.522941	Btu/(b.°F)	
ChemicaLogic Corporation, 99 South Be	dford St Sta 207 Budios	ton MA 01803 T	lel.

Boiler Combustion Efficiency Calculator U.S. DOE Steam System Assessment Tool (SSAT)

	Steam Syster Stack I	n Assessme	nt Tool
			k Oxygen Content, an estimate will be as a percentage of the heat fired.
SSATE	ck losses are related t Boiler Efficiency = 10 radiant heat loss from the	0% - Stack Loss (%	
		nput Data	
Stack Gas Temperature (*F)	400 "F 70 *F	Stack Temperature - Ambient Temperature = 330°F	
the second s	downdards	netric basis	
the second s		netric basis Results	
ote: Stack gas oxygen content is		Results	are as follows:
Natu Num Num Typi	expressed on a molar or volum	Results reach of the default fuels Sulfur) Sulfur) Sulfur) tuminous)	are as follows: 18.5 % 14.1 % 13.7 % 13.9 % 12.2 % 13.8 %

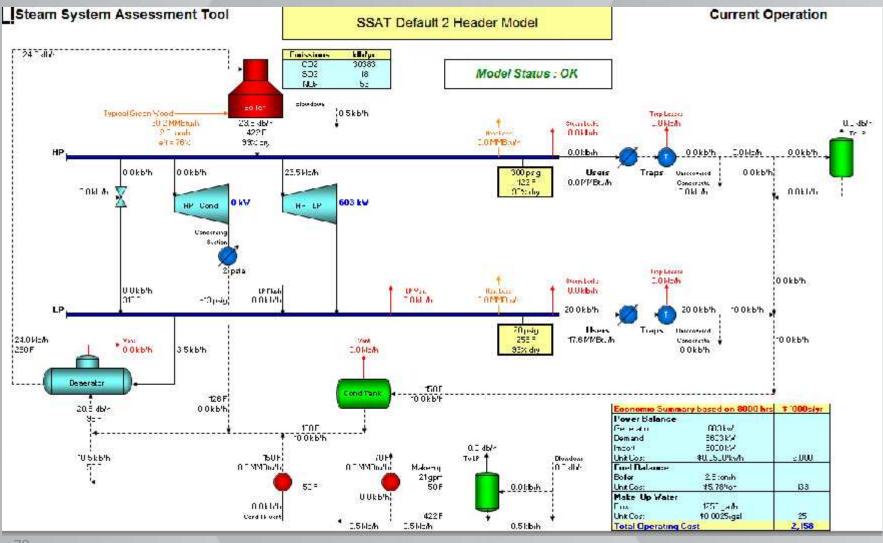
Boiler Replacement Choices


- When nearing end-of-life, consider a new boiler of the same steam output and pressure (this is your baseline cost).
- Consider a new MP (300-psig) saturated steam boiler with a backpressure turbine between a MP header and the LP header.
- Consider a 600-psig HP boiler delivering 750°F saturated steam to justify a boiler size increase, possibly with a condensing and backpressure turbine (or condensing/extraction unit).
- Consider a gas turbine with a HRSG if natural gas is available

Appropriate Boiler Pressures

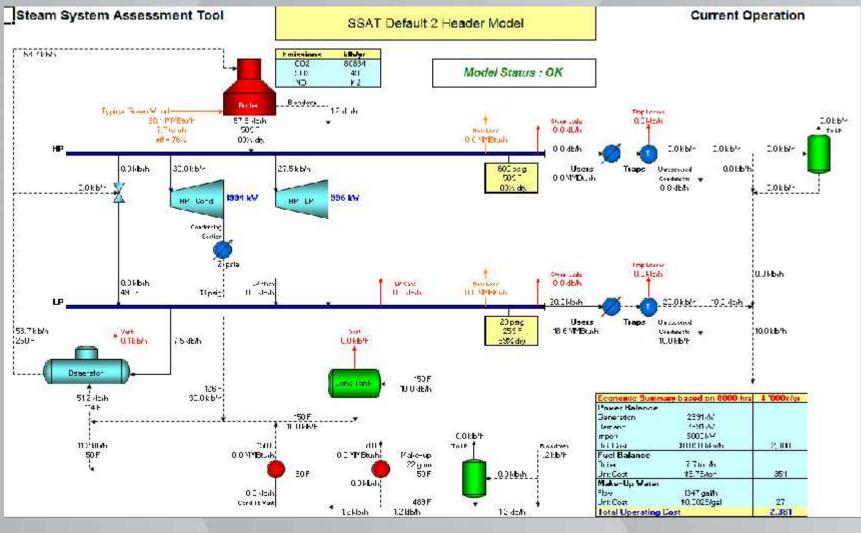
- Packaged fire tube boilers and smaller water tube boilers (<35,000 lbs/hour of steam) are generally limited to providing saturated steam at a pressure of 300-psig or less. Steam quality is reduced if routed through a backpressure turbine.
- Larger boilers can include super-heaters and provide steam at 600-psig/750°F (this is somewhat of an industry standard rating).

Baseline System


Biomass if Natural Gas is Not Available

78

Replacement MP Boiler


300-psig Saturated

79

New HP Boiler

600-psig/750°F Superheated Steam

80

Design Considerations

- Routing saturated steam through a backpressure turbine results in low-quality steam delivered to the LP header.
 Provide additional steam traps to remove the additional moisture.
- Optimize the steam system to reduce steam loads (such as increased condensate return).
- Additional fuel is required to account for the energy contained in the generated electricity.
- Use an appropriate turbine isentropic efficiency.

Fuel Consumption Adjustment

- The additional fuel consumption is the electrical energy produced by the backpressure turbine multiplied by 3,413 Btu/kWh, divided by the boiler and generator efficiencies (76% and 96%, respectively).
- Backpressure turbines produce electrical energy at close to the boiler efficiency.
- Wood-fired boilers have full-load efficiencies between 69% and 76%, depending on wood species and moisture content.

Common Mistakes in CHP Assessments

- Placing all the system costs on the electricity side and none on the thermal side. Then, when comparing project costs on a per kWh basis to the electric utility kWh costs, finding that "It doesn't pencil out."
- Assuming CHP is not applicable to building types, like a school.
- Under-sizing the feed-auger in a biomass CHP, shortchanging the power available.
- Failing to understand equipment performance; the main thermal need can be hot water or steam.
- Recognizing that gas turbine firing rates are in terms of lower heating value.
- Not considering appropriate gas and steam turbine part-load efficiency values.
- Not considering on-site CHP-related electrical energy consumption (service loads).

Common Mistakes in CHP Assessments (continued)

- Not using availability factors and O&M costs that are realistic and technology appropriate.
- Ignoring the game changing nature of fracking for future natural gas pricing.
- Not doing a detailed and site-specific CHP analysis.
 - Oregon alone has 41 retail electrical utilities with varying electrical rates, purchase prices, and hookup requirements.
- Lack of experience in doing a true feasibility study. There is no CHP certification.
- Incomplete feasibility study with no recommended size of system (0 to 8 MW range).
- Gold plating (i.e., overpricing the system).