

Who is Cimco?

- Canadian Ice Machine Company
- Around Since 1913
- Installed Over 50% Of The World's Ice Rinks
- Engineer, Design Build, Manufacture, Install & Service Ammonia, CO₂ And Any Other Refrigerant Systems

Who am I?

- Gerald Curran
- District Manager N. Alberta, Yukon, NWT, Nunavut
- Joined The Organization in 1981
- Senior Refrigeration Instructor AARFP

Ever Evolving

- Witness To Changing Trends Within The Components Of The Refrigeration Industry
- Changing Trends On The Use Of Refrigerants In Our Systems
 Components and Control Technology Is Now Front And Center

Are We Concerned About!

- ✓Aging Ice Facilities
- ✓ Aging Plant Rooms Not Up To New Codes
- ✓ Aging Mechanical Systems Operating Beyond Recommended
 - Life Span
- ✓Increased Energy Costs
- New Rules & Regulations

So, We Would Like!

✓ Education On Options For Current And Future

Considerations

✓ Want To Make Sure We Maintain Quality Ice

✓ Want To Be More Aware Of The Right Choices

AGING ARTIFICIAL ICE SYSTEMS

Protecting The Public, Employees And Visitors To The Facility

Factors That Influence Safety

System Age / Design

✤ Life Span, 50's Technology

Refrigerant Selection

Natural or Synthetic Refrigerant

Refrigerant Charge

Excessive Charge, Receiver

Protecting The Public, Employees And Visitors To The Facility

Factors That Influence Safety

- □ Machine Room Design
 - Does it Meet CSA B52 Code, Building Code etc.
- □Ventilation and Detection Design
 - Fan on the Wall?
- Maintenance

 Scheduled Maintenance According to the Manufacture

Protecting The Public, Employees And Visitors To The Facility

Factors That Influence Safety

When We Look At Our Own Facility The Question Becomes

Is our Ice Plant Safe?

Is our Ice Plant Room Safe?

Honeywel

1/

22

Protecting The Public, Employees And Visitors To The Facility

DANGERS OF REFRIGERANTS

Synthetics (Freon, Opteon, R507, etc.) - Displaces oxygen, flammable ≻Leaks in confined spaces can cause suffocation

Damages environment

Ammonia - Toxic, flammable ➤Suffocation and damage to air-way ➤Chemical burns CO2 – Displaces oxygen

Refrigerants

Occupational Exposure Limits of Different Substances

Toxicity Increases (More Dangerous) to the Right

Past History

- 1991: Alaska, R22, Maintenance Manager Was Killed By Asphyxiation
- ✓ 2010: Alabama, R22, Janitorial Worker Was Found Dead, Believed To Be Due To A Refrigerant Leak
- ✓ 2017: BC, R717 (Ammonia), Three Maintenance Workers Killed During Service Work.

Reality

✓ There Are in Excess of 5000 Ice Surfaces In North America

✓ Incidents Are Rare!

✓ With Proper Design And Maintenance, Refrigeration Facilities Are Safe

NH₃ (Ammonia)
 CO₂
 "Freon" (Synthetic)
 Hydrocarbons

Refrigerant Hazards

Toxici

Which is safe?
All have their Issues
Large Concentrations ALL Can Be Fatal

Ammonia

Propane

Flammability

Refrigerants

Synthetics / CO2

Asphyxiation

٠

Our Machine Rooms -Are They Safe?

- ✓ Does it Meet the CSA B52-13 Code?
- ✓ Look for New Technology
- ✓ Reduced Charge
- ✓ You Should Know When Hazards Exist
 ✓ Control Hazards

Monitoring

- \checkmark Know when the hazard exists
- ✓ Upgrade to a better monitoring system

Control the Hazards

- ✓ Proper Machinery Room Design
 - \succ (Ventilation)
 - ➤ (Detection)
 - Vestibule Making Sure All Key Safeties Are In Place
- Proper Isolation Points To Mitigate Leaks
 Preventative Maintenance Programs

Proper Maintenance

- ✓ Ensure You Have A Contractor You Can Trust
- ✓ Follow Manufacturer's Guidelines For Equipment
- Have A Capital Replacement Plan (Nothing Lasts Forever)

Training

- ✓ Plant Operators Have Better Training
 - ✓ Know What Not To Do
- ✓ Better Understanding Of Life Cycle Management
- Better Understanding Of Preventative Maintenance Programs
- Better Understanding Of Ice Plant Manuals
- Better Understanding Of The Supplier System Drawings

REDUCED REFRIGERANT CHARGE SAFETY

Plate and Frame Heat Exchangers

Advantages

- Low Charge
- High Heat Transfer
- Small Footprint
- Expandable
- Maintainable
- No Cross Contamination

60 Years Later!

80 - 90% reduction in charge

Movement from Shell & Tube Evaporators (Chillers) to

Plate Frame Exchangers is now Normal

Plate and Frame Heat Exchangers SA

Evaporative Condensers Being Replaced by Plate & Frame Exchangers To Reduce the Refrigerant Charge

Principle of Operation

Plate and Frame Heat Exchangers SAFETY

Plate & Frame Exchangers Now Work 00in Conjunction with Adiabatic Fluid Coolers

> Further Reducing the Operating Ammonia Charge

Estimates of Service Lives

Published by (ASHRAE) American Society of Heating, Refrigeration & Air Conditioning Engineers

Equipment Item	Median Years	Equipment Item	Median Years	Equipment Item	Median Years
Air conditioners		Air terminals		Air-cooled condensers	20
Window unit	10	Diffusers, grilles, and registers	27	Evaporative condensers	20
Residential single or split package	15	Induction and fan-coil units	20	Insulation	
Commercial through-the-wall	15	VAV and double-duct boxes	20	Molded	20
Water-cooled package	15	Air washers	17	Blanket	24
Heat pumps		Ductwork	30	Pumps	
Residential air-to-air	15 ^b	Dampers	20	Base-mounted	20
Commercial air-to-air	15	Fans	100 BACK	Pipe-mounted	10
Commercial water-to-air	19	Centrifugal	25	Sump and well	10
Roof-top air conditioners		Axial	20	Condensate	15
Single-zone	15	Propeller	15	Reciprocating engines	20
Multizone	15	Ventilating roof-mounted	20	Steam turbines	30
Boilers, hot water (steam)		Coils		Electric motors	18
Steel water-tube	24 (30)	DX, water, or steam	20	Motor starters	17
Steel fire-tube	25 (25)	Electric	15	Electric transformers	30
Cast iron	35 (30)	Heat exchangers		Controls	
Electric	15	Shell-and-tube	24	Pneumatic	20
Burners	21	Reciprocating compressors	20	Electric	16
Furnaces		Package chillers		Electronic	15
Gas- or oil-fired	18	Reciprocating	20	Valve actuators	
Unit heaters		Centrifugal	23	Hydraulic	15
Gas or electric	13	Absorption	23	Pneumatic	20
Hot water or steam	20	Cooling towers	0.00102	Self-contained	10
Radiant heaters		Galvanized metal	20		
Electric	10	Wood	20		
Hot water or steam	25	Ceramic	34		

Table 3 Estimates of Service Lives of Various System Components^a

Notes: 1. ASHRAE makes no claims as to the *statistical* validity of any of the data presented in this table.

Source: Data obtained from a survey of the United States by ASHRAE Technical Committee TC 1.8 (Akalin 1978).

Table lists base values that should be adjusted for local conditions (see the section on Service Life). ^a See Lovvom and Hiller (1985) and Easton Consultants (1986) for further information. ^b Data updated by TC 1.8 in 1986.

Have You Created A Life Cycle Plan

Priority Rank	Equipment	Safety Risk	Business Risk	ASHRAE Life Cycle	Estimated Age	Year to Replace
	Compressor #1	Critical	Critical	20		
	Compressor #2	Critical	High	20		
	Compressor #3	Critical	Medium	20		
	Compressor #4	Critical	Medium	20		
	Chiller	Critical	Critical	24		
	Condenser	High	High	15		
	Electrical Panel	High	Medium	20		
	Controls	High	Medium	15		
	Dehumidifiers	Medium	Medium	15		
	Headers	Medium	High	25		
	Floor	Medium	High	50		

Safety

Protecting The Public, Employees And Visitors To The Facility

Refrigeration Asset Report

SITE NAME: Home Town Arena SITE ADDRESS: 123 Anywhere Street Manitoba PLANT BUILT IN: 1974

Report Date: 20-Feb-19

The purpose of this asset report is to provide insight into the state of condition of the refrigeration equipment in your facility. Even with proper care and maintenance each component has an expected life cycle.

Capital Replacement

	OR #1 Arena ocating)	ASHRAE Life Cycle	Existing Age	Estimated Condition	Replace	Comments	Budget Cost (2018)
Manufacture: Model # Serial # Motor HP Motor Serial#: Soft Starter	Mycom N4M 4110182 75 H P Leesen G 150201.00 F 365T No	20 Years	4	Excellent	2035	New Compressor In 2012 46678 Hours- Due for Overhaul 2018	\$45,000.00
	CHANER & Tube	ASHRAE Life Cycle	Existing Age	Estimated Condition	Replace		Budget Cost (2018)
Manufacture : Model # Serial #	CIMCO 20x12-20x9 255490A / B	24 Years	19	GOOD	2025	Chiller was replaced in 1999 - Life expectancy is 20-30 Years	\$100,000.00
	ENSER e Condenser	ASHRAE Life Cycle	Existing Age	Estimated Condition	Replace	Comments	Budget Cost (2018)
Manufacture: Model # Serial #	Eva pco 2x3H P fans ATC 105B W017007	15 Years	18	GOOD	2027	Replaced in 2001	\$95,000.00
	DIFIER #1 nanical	ASHRAE Life Cycle	Existing Age	Estimated Condition	Replace	Comments .	Budget Cost (2018)
Manufacture: Model # Secial #	Blanchard Ness BA75G- 230/3/60 93040028	15 Years	n/a	Poor	2018	Past Life Expectancy	\$40,000.00

Have You Created A Life Cycle Plan

SAFET

Safety Protecting The Public, Employees And Visitors To The Facility

	FARTER PANELI ena	ASHRAE Life Cycle	Existing Age	Estimated Condition	Replace	Comments	Budget Cost (2018)	
Manufacture : Model # Serial #	Celco Controls N/A 1866	20 Years	27	Fair	2021	Installed in 1991	\$40,000.00	
CONTROL System Arena		ASHRAE Life Cycle	Existing Age	Estimated Condition	Replace	Comments	Budget Cost (2018)	
Manufacture : Model # Serial #	Mixed N/A N/A	15 Years	19-Apr	Fair	2018	Combination of controls- Chronostat, Honeywell - Celco	\$42,500.00	
BRINE PUMP (Base/Pipe Mounted) Arena		ASHRAE Life Cycle	Existing Age	Estimated Condition	Replace	Comments	Budget Cost (2018)	
Manu facture :	Taco							
Motor:	WEG 20 HP					Replace in 1999	* *** *** **	
Frame/Mofdel no.:	256T DP020504P			GOOD 2023		GOOD 2023 900 USGPM @52ft \$10,0	2022 .	\$10,000.00
Model #	FE5010	20 Years	19					
Serial #	991544							

Have You Created **A Life** Cycle Plan

ICE DUNS

Safety Protecting The Public, Employees And Visitors To The Facility

BUSINESS RISK OF EQUIPMENT FAILURE

Number of Compressors	Business Risk	
1 x Compressor No Redundancy	Critical: If failure occurs ice surface non- functional and loss in revenue. Emergency Replacement – 12 Weeks	
2 x Compressors No Redundancy	High: If failure occurs will result in poor ice conditions and potential lost revenue.	
2 x Compressors Full Redundancy	Medium: If failure occurs will result in increased run hours and no back up capabilities.	
3 or More Compressors No Standby	Medium: If failure occurs will result in increased run hours and no back up capabilities.	
3 or More Compressors One Standby	Low: If failure occurs will result in normal operating until the repairs/replacement has occurred.	

SAFETY

BUSINESS RISK OF EQUIPMENT FAILURE

	Number of Chillers	Business Risk	
	No Redundancy	Critical: If failure occurs ice surface non- functional and loss in revenue. Emergency Replacement – 12 Weeks	
	Partial Redundancy	High: If failure occurs will result in poor ice conditions and increased operational issues to maintain ice.	
ANAL III	Full Redundancy	Medium: If failure occurs will result in normal operating until the repairs/replacement has occurred.	ICE RUNS IN OUR VEINS.
1			

SAFETY

Safety Protecting The Public, Employees And Visitors To The Facility

SAFETY

BUSINESS RISK OF EQUIPMENT FAILURE

Number of Condensers	Business Risk	
No Redundancy	High: If failure occurs will result in poor ice conditions and potential lost revenue. Emergency Replacement: 10 Weeks	
Partial Redundancy	Medium: If failure occurs will result in operational challenges to maintain ice.	
Full Redundancy	Low: If failure occurs will result in normal operating until the repairs/replacement has occurred.	ICE RUN IN OU VEINS
		1 2R

SAFETY

BUSINESS RISK OF EQUIPMENT FAILURE

Electrical/Control Panels	Business Risk
No Redundancy	High: If failure occurs will result in poor ice conditions and operational issues. Repair components are usually readily available so the repair can be made in a
	timely manner.

BUSINESS RISK OF EQUIPMENT FAILURE

Safety Risk Ranking **Refrigeration Equipment** Shell & Tube Chiller Critical 1 Reciprocating Compressors Critical 2 High **Evaporative Condenser** 3 Electrical/Control Panel High 4 Dehumidifiers Medium 5 **Concrete Floor/Headers** Medium 6

SAFET)

Safety Protecting The Public, Employees And Visitors To The Facility

BUSINESS RISK OF EQUIPMENT FAILURE

Refrigeration Equipment Safety Risk Replacement (weeks) Shell & Tube Chiller Critical 12 Reciprocating Compressors Critical 10 High **Evaporative Condenser** 8 **Concrete Floors/Headers** High Months Dehumidifiers Medium 8 Electrical/Control Panel Medium 12

SAFETY

Safety Summary

Current Design Or Future Design

□ Refrigerant

- ✓ AII Refrigerants Have Risks, Make Sure You Account For Them In Your Safety Assessment
- Design
 - ✓ Designed For Service
 - ✓ Proper Application
 - ✓ Newest Safety Features Available

Safety Summary

- ✓Inspect And Monitor Equipment
- ✓ Create A Capital Replacement Plan
- ✓ Follow Manufactures Recommendations
- ✓ Have A Trusted Contractor Who Will Do The Required Maintenance
- - ✓ Are We Adequately Trained
 - ✓ More Site Specific Training

Safety Summary

SAFETY

CSA-B52-13 - Code Compliance Report

- ✓ Grandfather Clause???
- ✓ Is Your Machine Room Safe

□Refrigeration System Audit

- ✓ Do You Really Know How Good Your Systems Components Are?
- ✓ What Is Your Equipment's Current Lifespan
- ✓ What is Your Risk Tolerance

AGING ARTIFICIAL ICE SYSTEMS

Efficiency

Maintaining Budgets with Rising Energy Costs

Efficiency Factors

- Design Conditions
- Refrigerant Selection
- Component Selection
- Design Type
- ➤ Heat Usage

Defining Efficiency

Horsepower per 100 Tons of Refrigerant

Refrigerant

What To Consider?

Yearly Consumption

Yearly Consumption

R-448A - Honeywell

R-449A - Chemours

- Either have very similar performance characteristics at rink conditions and there is no real difference between them
- Require POE lubricant for the compressors.
- Only suitable for use in DX type evaporator
- Expect about a 10-12% performance decrease with these refrigerants based on selection using DEW and BUBBLE point temperatures in the evaporator and condenser respectively.

Equipment Selection

- Refrigeration (High Differential)
- Air Conditioning(Low Differential)
- Refrigeration(Subcritical/Transcritical)
- ➢ Air Cooled / Water Cooled
- Reciprocating Compressors
- Screw Compressors

Heat Reclaim

WASTE HEAT PRODUCED BY THE REFRIGERATION SYSTEM

A Typical 100 Ton Artificial Ice System Will Produce The Following Waste Heat; Heat That Is Available For Heat Reclaim

Refrigeration Capacity (100 Tr. = 1,200,000 Btuh) Electrical Input (150 Hp = 2545 X 150 = 381,750 Btuh) Total Waste Heat Available = 1,581,750 Btuh

✓ <u>A Typical Home Requires A 80,000 Btu/Hr Furnace</u>
 ✓ <u>The Waste Heat Could Heat 20 Homes All Winter</u>

TININ - NU BA

Natural Resources Ressources naturelles Canada Canada

COMPARATIVE STUDY OF REFRIGERATION SYSTEMS FOR ICE RINKS

CanmetENERGY, Varennes July 2013

Canadä

Plant Options (Canmet)

Table 12: Energy Consumption of Refrigeration Systems

Case	Assembly Type	Refrigerant	COMPRESSORS	SLAB PUMP	HEAT REJECTION EQUIPMENT	Total	VARIATION
UNIT			KWH/YEAR	кWh/ year	KWH/YEAR	KWH/YEAR	%
A1	Packaged	R717	279,200	73,300	54,500	407,000	6
A2	On site	R717	245,000	73,300	65,000	383,400	0
A3	On site	R717	267,800	122,200	63,600	453,600	18
A4	Packaged	R717	264,000	73,300	74,900	412,200	8
A5	Packaged	R717	298,500	73,300	74,600	446,400	16
C1	Split-packaged	R744	263,400	14,700	<u>13,000</u>	291,100	-24
C2	Split-packaged	R744	281,200	73,300	19,900	374,500	-2
H1	Onsite	HCFC R22	411,900	122,200	16,100	550,200	44
H2	Packaged	HFC R507A	368,800	73,300	26,200	468,400	22
H3	Modular	HFC R410A	465,300	36,200	53,100	554,600	45
H4	Modular	HFC R507A	323,900	97,800	63,900	485,500	27
Н5	Packaged	HFC R134A	339,300	73,300	106,000	518,600	35

The C1 refrigeration system using CO2 consumes less energy, 18% less than Unit A2. This is mostly due to the CO2 directly recirculating in the rink slab.

Unit C2 that is CO2-based uses a secondary fluid in the rink slab and is a more realistic comparison to ammonia systems.

Efficiency Summary

- Refrigerant Selection
 - Select the correct refrigerant for your application and conditions
- Design
 - Select appropriate equipment
 - Use equipment that was designed for the application
 - Integrate heat reclaim when possible
- Ongoing Improvement
 - Monitor energy consumption to ensure equipment is working properly
 - Implement technologies when possible which can save money over the long term

Protecting the Future

Environmental Agreements

Agreement	Date	Target
Montreal Protocol	1987	Ozone Depletion
Paris Accord	2016	Mitigate Global Warming
Kigali Agreement	2016	HFC Use/Production

Protecting the Future

Environmental Agreements

Global CO2 Emissions

HFC Phase-down Not a Phase-Out But May be Charged Based On GWP Potential

Takes effect end of 2019 when at least 20 member countries ratify

Businesses should start planning now for a low-GWP future.

Kigali has created a framework for regulatory bodies to address global warming

R-22 Phaseout (Montreal Protocol)

Environmental

Timeline of Refrigerant Technologies

New Regulations

Stand-Alone Medium Temperature Systems (Self-contained Systems) Maintaining product temperatures above 0 Celsius January 1, 2020 >650 GWP

Stand-Alone Low Temperature Systems (Self-contained Systems) Maintaining product temperatures from 0 Celsius to above -50 Celsius January 1, 2020 >1500 GWP

Centralized Refrigeration Systems (Parallel Racks, Condensing Units) January 1, 2020 >1500 GWP

Chillers For Air-Conditioning

January 1, 2025 >700 GWP

Domestic Refrigeration

January 1, 2025 >150 GWP

Mobile Refrigeration Systems January 1, 2025 >2200 GWP

Global Warming Potential of Different Substances Global Warming Potential [GWP] 1760 1774 1273 1300 з R717 111 R-12320 12301 12302 R-12302 R-1230 R-123 R-450 R-1230 R-4520 R-32 R-480 R-1230 R-490 R-22 R-407 R-4100

Magnitude of Effect Increases (Worsens) to the Right

Product information (sorted by Product Type and Name)

Туре	Product R- Number	ODP ¹		GWP ²	ENVIRONMENT
CFC	12	1	High	10900	High
	502	0,33	High	4657	High
HCFC	22	0,055	Medium	1810	Medium
	123	0,060	Medium	77	Low
	401A	0,033	Medium	1182	Medium
	401B	0,036	Medium	1288	Medium
	402A	0,019	Medium	2788	High
	402B	0,030	Medium	2416	Medium
	408A	0,024	Medium	3152	High
	409A	0,046	Medium	1909	Medium
HFC	23	0	Zero	14800	High
	32	0	Zero	675	Medium
	134a	0	Zero	1430	Medium
	404A	0	Zero	3922	High
HFO	1234yf	0	Zero	4	Low
	1234ze	0	Zero	6	Low
Natural/Not in Kind	170	0	Zero	6	Low
	290	0	Zero	3	Low
	600a	0	Zero	3	Low
	717	0	Zero	0	Zero
	744	0	Zero	1	Low
	1150	0	Zero	4	Low
	1270	0	Zero	2	Low

Refrigerant Choice

Table 4: Main Refrigerants and Their Environmental Impacts

REFRIGERANT COMPONENTS		GWP ⁽¹⁾	ODP ⁽²⁾	
R-717	Ammonia	0	0	
R-744	Carbon dioxide (CO ₂)	1	0	
CIC-KII	Fuie	3800	<u></u>	
VI V- IX12	Perc	8100	1.0	
DARS DAA	Ture	1010	0.005	
	Pare	72	<u>a aza</u>	
	Dura	1430	0	
ште риоил	P. 435 /442A/424A	2000	0	
HEC-DU07A	P-82/125/184A	2/100	n	
	к-э2/125/134А	1900	U	
MING-KALWA	K-32/123	14420	U	
	R-123/1344/000	2300	Ū	
III.S. N. 244	R-123/134A/000A	3100		
	R 125/134A/500A	2700	2	
UCC 0457A	n oo/ioc/iaoa/ioaa	2100	ē	
	P 43E /442A	4000	0	

Legend:

Bold font = frequently used in ice rinks

⁽¹⁾ GWP: Global-warming potential

(2) ODP: Ozone depletion potential

Source: ASHRAE Handbook Fundamentals 2009, Refrigerants

Opteon XP10 (R 513A)

134a

GWP

HF0-1234yf

Flammability

HFCs are going away and in fact are already seeing a ol shrinking marketplace both in the European Union and in North America.

CHEMOURS HFO Refrigerants

HONEYWELL HFO Refrigerants

- <u>Opteon™ YF (HFO-1234yf):</u>
- <u>Opteon™ XP10 (R-513A)</u>
- <u>Opteon™ XP40 (R-449A)</u>
- <u>Opteon™ XP44 (R-452A):</u>
- <u>Opteon™ XL55 (R-452B):</u>
- Opteon[™] XP30 (R-514A):

- Solstice L40X (R-455A)
- Solstice YF (R-1234yf)
- Solstice zd (R-1233zd)
- <u>Solstice ze (R-1234ze)</u>
- Solstice N13 (R-450A)
- Solstice N40 (R-448A)

Component Selection Is Important^{COST ?}

- Type of Compression
- Type of Condensing Unit
- Type of Evaporation Unit
- Type of Refrigerant
- Horsepower per Ton
- Heat Reclaim
- Based on TIME OF PURCHASE TO GRAVE

220

Reliability

Keeping the ice and Maintaining the Ice - NHL Quality

Redundancy

Construction

COMPRESSION

Hermetic

- No Maintenance
- No Rebuild
- Short Life

Arcos

RELIABILITY

Open Reciprocating

- Maintenance
- Rebuild
- Lasts almost indefinitely

Open / Packaged Screw

- Maintenance
- Rebuild
- Lasts a lot longer
 - between rebuilds

CONDENSATION

Induced Draft Evap. Condensers

- High Maintenance
- Scale Problems
- Short Life

Forced Air Evap Condenser

- High Maintenance
- Scale Problems
- Leaks

Adiabatic Fluid Cooler Or Condenser

- Low Maintenance
- No Scale / Ice Build
 Up ICE RUNS
 No Remote Sump
 - System E

EVAPORIZATION

Shell & Tube Chiller

- High Maintenance
- Carbon Steel Tubes
- Mid Efficient
- Large Refrigerant

Plate & Frame

- Low Maintenance
- Stainless Steel or Titanium

TE P

- Lasts almost indefinitely
- Replaceable Gaskets
 - Low Refrigerant Charge

Industrial Style

Commercial Style

AGING ARTIFICIAL ICE SYSTEMS

Replacement

Advantages:

- ✓ Brand new plant
- ✓ Complete Warranty
- Take advantage of new technologies

Disadvantages:

- Equipment Costs
- May require building changes
- Building Costs...

Replace

Replacement Outside Stand Alone

- ✓ Lowest Cost
- ✓ Commercial Grade
- ✓ Adapted for Rink Conditions
- ✓ Synthetic Refrigerant
- ✓ High Energy Usage
- ✓ Low Lifespan

Replacement

 \checkmark NH₃ Refrigerant ✓ Industrial Grade ✓ Engineered For **Rink Conditions** ✓ Low Charge

✓ Smart Connected

Replace

Replacement – Heat Reclaim

Replace

- ✓Any Refrigerant
- ✓Industrial Grade
- ✓ Engineered For Rink Conditions
- ✓ Low Charge
- ✓Inherent Heat Reclaim

Replacement – CO2 System

Replace

- ✓ CO_2 Refrigerant
- ✓Industrial Grade
- ✓ Engineered For Rink Conditions
- ✓ Direct Floor or
- ✓ Indirect (Glycol / Brine)
- ✓ Available Heat Reclaim

Retrofit

- ✓ Make use of existing infrastructure
- ✓ Like for Like

Retrofit

Advantages:

- ✓ Reduced costs
- ✓ Take advantage of existing equipment
- ✓ Can take advantage of a lot of new tech
- ✓ Can do piece by piece

Disadvantages:

- Not everything is new
- Partial Warranty

Retrofit

- ✓ Make use of existing infrastructure
- ✓Add additional features
- ✓ Take advantage of new technologies
- ✓ Reduce charge
- ✓ Potential for Heat Reclaim

(SMART) RINK CONNECT

Retrofit

Do Nothing

Maintain

Advantages:

✓ No Cost

Disadvantages:

- Don't address any of the concerns
- No improvement to the plant
- No improvement to safety
- Unknowns
- Risk of Shutdown
- Risk of Injury if equipment fails

Maintain SUMMARY

> Need To Do What's Right For You, Based On Your Primary Criteria

- Typically The Refrigeration Plant Is "Part Of The Building" Make Sure The Plant Itself Can Last As Long As It Needs To
- Consider All The Options, Retrofit And Replacement, And All The Factors.
- Ask Questions

> To Make Sure What You're Getting, Is Right For You!

Thank You