Cost-effectiveness Analysis of Abacavir-based and Tenofovir-based regimens in Singapore Ong Y.Y.¹, Hoo G.¹, Law H.L.¹, Ng O.T.² ¹Department of Pharmacy, Tan Tock Seng Hospital, Singapore ²Department of Infectious Disease, Tan Tock Seng Hospital, Singapore

Introduction

- Human immunodeficiency virus (HIV) infection has evolved into a chronic disease with the use of highly active antiretroviral therapy (HAART) ^(1,2). As life expectancy of HIV-positive individuals improves, the duration of treatment increases. Cost of treatment will be a major factor affecting the choice of HAART.
- In addition to cost of medications, the cost of monitoring of short- and long-term side effects will also contribute to the total treatment cost of this disease.
- For management of HIV, the need for long-term treatment, good adherence and a low rate of antiviral resistance should also be evaluated in terms of lifetime costs.

Demographics Information		ABC-based regimen N (%)		TDF-based regimen N (%)	
		Male (n=105)	Female (n=10)	Male (n=105)	Female (n=10)
Age	Mean age (years) ± S.D.	46 ± 14.0			
Race	Chinese	95 (82.6)		94 (81.7)	
	Malay	14 (12.2)		13 (11.3)	
	Indian	3 (2.6)		6 (5.2)	
	Others	3 (2.6)		2 (1.7)	
Pharmacological	NRTI ¹ /NNRTI ²	97 (84.3)		92 (80.0)	
	NRTI/PI ³	15 (13.1)		20 (17.4)	

Objectives

To assess the cost-effectiveness of abacavir (ABC)-based and tenofovir (TDF)based regimens for treatment of HIV in Singapore, taking into account:

(1) Cost of drugs alone(2) Cost of drugs and monitoring

Methods

- Study design: This was a single-centre, retrospective study, conducted at the Communicable Disease Centre (CDC), Tan Tock Seng Hospital (TTSH). This study was approved by National Health Group Institutional Review Board.
- Inclusion criteria: (1) Have a positive western blot test and diagnosed with HIV by a medical doctor, (2) above 21 years of age, (3) currently on follow up at CDC, and (4) prescribed with either ABC-based or TDF-based regimens for at least 48 weeks.
- Exclusion criteria: (1) Patients who have less than two viral load (VL) readings,
 (2) diagnosed with HIV before the year 2006, (3) incomplete or missing case notes.
- \blacktriangleright Matching criteria: Patients from the ABC group were matched with patients from

NRTI/INSTI ⁴	3 (2.6)	3 (2.6)
Adherence (>95%)	107 (93)	105 (91.3)

¹NRTI (Nucleot(s)ide reverse transcriptase inhibitors): Lamivudine, emtricitabine ²NNRTI (Non-nucleotide reverse transcriptase inhibitors): Efavirenz, nevirapine ³PI (Protease inhibitors): Ritonavir-boosted atazanavir, ritonavir-boosted lopinavir ⁴INSTI (Integrase inhibitors): Raltegravir

Table 1. Patient characteristics (N=230)

p = 0.029 p = 0.006100 94 (86.2) 89 (78.1) 88 (74.1) 90 80 68 (60.7) 70 60 50 40 30 20 10 W12 to W36 W36 to W60 TDF ABC

Figure 1. Effectiveness of regimen at Week 24 and Week 48

Table 2: Incremental cost-effectiveness results

		Effectiveness measure	Difference in costs $(C_a - C_t)^a$	Difference in effectiveness $(E_a - E_t)^b$	Costs of medications only
Cm	Costs of medications only	Undetectable viral load (week 12 to week 36) ^c	-2309.33	0.173	-13348.72 Dominant
		Undetectable viral load (week 37 to week 60) ^d	-2309.33	0.121	-19085.37 Dominant
Un vira mo	Jndetectable viral load (3 to 9 nonths) ^c	Undetectable viral load (week 12 to week 36) ^c	-2361.46	0.173	-13650.05 Dominant
		Undetectable viral load (week 37 to week 60) ^d	-2361.46	0.121	-19516.20 Dominant

TDF group according to: (1) age group, (2) gender, (3) remaining two HAART agents prescribed, (4) body mass index (BMI), and (5) race.

Data analysis: Effectiveness is defined as percentage of patients who achieved undetectable VL at the period between week 24 and week 48. An incremental cost-effectiveness ratio (ICER) analysis was performed to evaluate the costeffectiveness between ABC-based and TDF-based regimens between the two evaluation periods. Costs were reported in Singapore dollars (S\$).

ICER: $(C_a - C_t)/(E_a - E_t)$

- C_a: total cost in the ABC group
- C_t: total cost in the TDF group
- E_a: effectiveness in the ABC group
- E_t : effectiveness in the TDF group
- NOTE: 1st ICER: drug cost alone, 2nd ICER: drug cost and monitoring costs

Results

- 230 patients were analyzed (82.2% Chinese, 91.3% male, age: 46.0 ± 13.0 years old), 115 patients in each group [Table 1].
- The most commonly used combinations were ABC, lamivudine (3TC) and

- ^a Difference in the total annualized drug cost between treatment groups [i.e. the cost in the ABC group (C_a) minus the cost in the TDF group (C_t)]. This is the numerator of the ICER.
- ^b Difference in the effectiveness endpoint between treatment groups [i.e. the proportion of patients achieving the endpoint in the ABC group (E_a) minus the proportion of patients achieving the endpoint in the TDF group (E_t)]. This is the denominator of the ICER.
- ^c Proportion of subjects achieving a undetectable viral during the evaluation period (weeks 12 to 36). ^d Proportion of subjects achieving a undetectable viral during the evaluation period (weeks 37 to 60).

Discussion

- ABC-based regimen was found to be more cost effective than TDF-based regimen in HIV patients in Singapore for both evaluation periods (week 24 and week 48), regardless whether only cost of medications or cost of medications and monitoring were considered.
- Exclusion of some monitoring costs such as genotyping for HLAB*5701 for ABC could make it even more cost-effective, especially for our Asian population (excluding Indians)⁽³⁾.
- One of the limitations we faced included the presence of external buyers' club where patients were able to obtain medications at cheaper prices or fixed-dose combinations that are not available at TTSH. Additional costs such as physician office visits and hospitalization costs for opportunistic infections were not included in the calculation of ICERs.

efavirenz (EFV) (76.5%), and TDF, 3TC and EFV (78.2%); followed by ABC, 3TC, ritonavir boosted-atazanavir (ATV/r) (13.0%) and TDF, 3TC and ATV/r (11.3%) [Table 1].

- Majority of the patients were at least 95% adherent to their medication regimen (93.0% and 91.3% for ABC and TDF group respectively) [Table 1]. For both evaluation periods, more patients in the ABC group obtained undetectable VL (77.4% vs 59.1% and 81.7% vs 76.5%) [Figure 1].
- The ICER value was –S\$13348.72 for the period of week 24 (week 12 to 36) and –S\$19085.37 for the period of week 48 (week 37 to week 60) [Table 2].
- As public healthcare expenditure increase, this knowledge may be useful to physicians, policy makers, and tax payers in their efforts at making clinically appropriate yet cost-conscious decisions.

- 1. Freedberg., KA. et.al, . N Engl J Med. 2001; 344:824-831
- 2. Volberding., PA.et.al. Lancet. 2010; 376: 49-62.
- 3. Kapoor R.et.al. Pharmacogenet Genomics. 2015 Feb;25(2):60-72.