
Netflix and Open Source 

April 2013 

Adrian Cockcroft 
@adrianco #netflixcloud @NetflixOSS 

http://www.linkedin.com/in/adriancockcroft 



Cloud Native 

NetflixOSS – Cloud Native On-Ramp 

Netflix Open Source Cloud Prize 



We are Engineers 

We solve hard problems 

We build amazing and complex things 

We fix things when they break 



We strive for perfection 

Perfect code 

Perfect hardware 

Perfectly operated 



But perfection takes too long… 

So we compromise 

Time to market vs. Quality 

Utopia remains out of reach 



Where time to market wins big 

Web services 

Agile infrastructure - cloud 

Continuous deployment 



How Soon? 

Code features in days instead of months 

Hardware in minutes instead of weeks 

Incident response in seconds instead of hours 



Tipping the Balance 

Utopia Dystopia 



A new engineering challenge 

Construct a highly agile and highly 
available service from ephemeral and 

often broken components 



Cloud Native 

How does Netflix work? 



Netflix Member Web Site Home Page 
Personalization Driven – How Does It Work? 



How Netflix Streaming Works 

Customer Device 
(PC, PS3, TV…) 

Web Site or 
Discovery API 

User Data 

Personalization 

Streaming API 

DRM 

QoS Logging 

OpenConnect 
CDN Boxes 

CDN 
Management and 

Steering 

Content Encoding 

Consumer 
Electronics 

AWS Cloud 
Services 

CDN Edge 
Locations 



Content Delivery Service 
Open Source Hardware Design + FreeBSD, bird, nginx 



November 2012 Traffic 



Real Web Server Dependencies Flow 
(Netflix Home page business transaction as seen by AppDynamics) 

Start Here 

memcached 

Cassandra 

Web service 

S3 bucket 

Three Personalization movie group 
choosers (for US, Canada and Latam) 

Each icon is 
three to a few 
hundred 
instances 
across three 
AWS zones 



Cloud Native Architecture 

Distributed Quorum 
NoSQL Datastores 

Autoscaled Micro 
Services 

Autoscaled Micro 
Services 

Clients Things 

JVM JVM 

JVM JVM 

Cassandra Cassandra Cassandra 

Memcached 

JVM 

Zone A Zone B Zone C 



Non-Native Cloud Architecture 

Datacenter 
Dinosaurs 

Cloudy 
Buffer 

Agile Mobile 
Mammals 

iOS/Android 

App Servers 

MySQL Legacy Apps 



New Anti-Fragile Patterns 

Micro-services 
Chaos engines 

Highly available systems composed 
from ephemeral components 



Stateless Micro-Service Architecture 

Linux Base AMI (CentOS or Ubuntu) 

Optional 
Apache 

frontend, 
memcached, 
non-java apps 

Monitoring 

Log rotation 
to S3 

AppDynamics 
machineagent 

Epic/Atlas  

Java (JDK 6 or 7) 

AppDynamics 
appagent 

monitoring 

GC and thread 
dump logging 

Tomcat 
Application war file, base 
servlet, platform, client 
interface jars, Astyanax 

Healthcheck, status 
servlets, JMX interface, 

Servo autoscale 



Cassandra Instance Architecture 

Linux Base AMI (CentOS or Ubuntu) 

Tomcat and 
Priam on JDK 

Healthcheck, 
Status 

Monitoring 

AppDynamics 
machineagent 

Epic/Atlas  

Java (JDK 7) 

AppDynamics 
appagent 

monitoring 

GC and thread 
dump logging 

Cassandra Server 
Local Ephemeral Disk Space – 2TB of SSD or 1.6TB disk 

holding Commit log and SSTables 



Cloud Native 

Master copies of data are cloud resident 

Everything is dynamically provisioned 

All services are ephemeral 



Dynamic Scalability 



Asgard 
http://techblog.netflix.com/2012/06/asgard-web-based-cloud-management-and.html 



Cloud Deployment Scalability 
New Autoscaled AMI – zero to 500 instances from 21:38:52 - 21:46:32, 7m40s 

Scaled up and down over a few days, total 2176 instance launches, m2.2xlarge (4 core 34GB) 
 

Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

41.0   104.2   149.0   171.8   215.8   562.0 



Ephemeral Instances 

• Largest services are autoscaled 

• Average lifetime of an instance is 36 hours 
P
u
s
h 

Autoscale Up 
Autoscale Down 



Leveraging Public Scale 

Public 
Grey 
Area 

Private 

1,000 Instances 100,000 Instances 

Netflix Google Startups 



How big is Public? 

AWS upper bound estimate based on the number of public IP Addresses 
Every provisioned instance gets a public IP by default  

AWS Maximum Possible Instance Count 3.7 Million 
Growth >10x in Three Years,  >2x Per Annum 



Availability 

Is it running yet? 

How many places is it running in? 

How far apart are those places? 



Antifragile API Patterns 
Functional Reactive with Circuit Breakers and Bulkheads 





Outages 

• Running very fast with scissors 

– Mostly self inflicted – bugs, mistakes 

– Some caused by AWS bugs and mistakes 

 

• Next step is multi-region 

– Investigating and building in stages during 2013 

– Could have prevented some of our 2012 outages 



Managing Multi-Region Availability 

Cassandra Replicas 

Zone A 

Cassandra Replicas 

Zone B 

Cassandra Replicas 

Zone C 

Regional Load Balancers 

Cassandra Replicas 

Zone A 

Cassandra Replicas 

Zone B 

Cassandra Replicas 

Zone C 

Regional Load Balancers 

UltraDNS 
DynECT 

DNS 

AWS 
Route53 

A portable way to manage multiple DNS providers from Java 

Denominator 



Configuration State Management 

Datacenter CMDB’s woeful 

Cloud native is the solution 

Dependably complete 



Monkeys 

Edda – Configuration History 
http://techblog.netflix.com/2012/11/edda-learn-stories-of-your-cloud.html 

Edda 

AWS 
Instances, 
ASGs, etc. 

Eureka 
Services 

metadata 

AppDynamics 
Request flow 



Edda Query Examples 

Find any instances that have ever had a specific public IP address 
$ curl "http://edda/api/v2/view/instances;publicIpAddress=1.2.3.4;_since=0" 

["i-0123456789","i-012345678a","i-012345678b”] 

 

Show the most recent change to a security group 
$ curl "http://edda/api/v2/aws/securityGroups/sg-0123456789;_diff;_all;_limit=2" 

--- /api/v2/aws.securityGroups/sg-0123456789;_pp;_at=1351040779810 

+++ /api/v2/aws.securityGroups/sg-0123456789;_pp;_at=1351044093504 

@@ -1,33 +1,33 @@ 

 { 

… 

       "ipRanges" : [ 

         "10.10.1.1/32", 

         "10.10.1.2/32", 

+        "10.10.1.3/32", 

-        "10.10.1.4/32" 

… 

 } 

 



A Cloud Native Open Source Platform 



Inspiration 



Three Questions 

 

Why is Netflix doing this? 

 

How does it all fit together? 

 

What is coming next? 



Beware of Geeks Bearing Gifts: Strategies for an 
Increasingly Open Economy 

Simon Wardley - Researcher at the Leading Edge Forum 



How did Netflix get ahead? 

Netflix Business + Developer Org 

• Doing it right now 

• SaaS Applications 

• PaaS for agility 

• Public IaaS for AWS features 

• Big data in the cloud 

• Integrating many APIs 

• FOSS from github 

• Renting hardware for 1hr 

• Coding in Java/Groovy/Scala 

 

Traditional IT Operations 

• Taking their time 

• Pilot private cloud projects 

• Beta quality installations 

• Small scale 

• Integrating several vendors 

• Paying big $ for software 

• Paying big $ for consulting 

• Buying hardware for 3yrs 

• Hacking at scripts 



Netflix Platform Evolution 

Bleeding Edge 
Innovation 

Common 
Pattern 

Shared 
Pattern 

2009-2010 2011-2012 2013-2014 

Netflix ended up several years ahead of the 
industry, but it’s not a sustainable position 



Making it easy to follow 

Exploring the wild west each time vs. laying down a shared route 



Establish our 
solutions as Best 

Practices / Standards 

Hire, Retain and 
Engage Top 
Engineers 

Build up Netflix 
Technology Brand 

Benefit from a 
shared ecosystem 

Goals 



How does it all fit together? 



Github 
NetflixOSS 

Source 

AWS 
Base AMI 

Maven 
Central 

Cloudbees 
Jenkins 

Aminator 
Bakery 

Dynaslave 
AWS Build 

Slaves 

Asgard 
(+ Frigga) 
Console 

AWS 
Baked AMIs 

Odin 
Orchestration 

API 

AWS 
Account 

NetflixOSS Continuous Build and Deployment 



AWS Account 

Asgard Console 

Archaius Config 
Service 

Cross region 
Priam C* 

Explorers 
Dashboards 

Atlas 

Monitoring 

Genie Hadoop 
Services 

Multiple AWS Regions 

Eureka Registry 

Exhibitor ZK 

Edda History 

Simian Army 

3 AWS Zones 
Application 

Clusters 

Autoscale Groups 

Instances 

Priam 

Cassandra 

Persistent Storage 

Evcache 

Memcached 

Ephemeral Storage 

NetflixOSS Services Scope 



• Baked AMI – Tomcat, Apache, your code 

• Governator – Guice based dependency injection 

• Archaius – dynamic configuration properties client 

• Eureka - service registration client 

Initialization 

• Karyon - Base Server for inbound requests 

• RxJava – Reactive pattern 

• Hystrix/Turbine – dependencies and real-time status 

• Ribbon - REST Client for outbound calls 

Service 
Requests 

• Astyanax – Cassandra client and pattern library 

• Evcache – Zone aware Memcached client 

• Curator – Zookeeper patterns 

• Denominator – DNS routing abstraction 

Data Access 

• Blitz4j – non-blocking logging 

• Servo – metrics export for autoscaling 

• Atlas – high volume instrumentation 
Logging 

NetflixOSS Instance Libraries 



• CassJmeter – Load testing for Cassandra 

• Circus Monkey – Test account reservation rebalancing Test Tools 

• Janitor Monkey – Cleans up unused resources 

• Efficiency Monkey 

• Doctor Monkey 

• Howler Monkey – Complains about expiring certs 

Maintenance 

• Chaos Monkey – Kills Instances 

• Chaos Gorilla –  Kills Availability Zones 

• Chaos Kong – Kills Regions 

• Latency Monkey – Latency and error injection 

Availability 

• Security Monkey 

• Conformity Monkey Security 

NetflixOSS Testing and Automation 



Example Application – RSS Reader 



More Use Cases 

More 
Features 

Better portability 
 
Higher availability 
 
Easier to deploy 
 
Contributions from end users 
 
Contributions from vendors 
 

What’s Coming Next? 



Vendor Driven Portability 
Interest in using NetflixOSS for Enterprise Private Clouds 

“It’s done when it runs Asgard” 
Functionally complete 
Demonstrated March 
Release 3.3 in 2Q13 

Some vendor interest 
Needs AWS compatible Autoscaler 

Some vendor interest 
Many missing features 
Bait and switch AWS API strategy 



AWS 2009 
Baseline features needed to support NetflixOSS 

Eucalyptus 3.3 



Netflix Cloud Prize 

Boosting the @NetflixOSS Ecosystem 



In 2012 Netflix Engineering won this.. 



We’d like to give out prizes too 

But what for? 
Contributions to NetflixOSS! 
Shared under Apache license 

Located on github 





How long do you have? 

Entries open March 13th 

Entries close September 15th 

Six months… 



Who can win? 

Almost anyone, anywhere… 

Except current or former Netflix or 
AWS employees 



Who decides who wins? 

Nominating Committee 

Panel of Judges 



Judges 

Aino Corry 
Program Chair for Qcon/GOTO 

Martin Fowler 
Chief Scientist Thoughtworks Simon Wardley 

Strategist 

Yury Izrailevsky 
VP Cloud Netflix 

Werner Vogels 
CTO Amazon Joe Weinman 

SVP Telx, Author “Cloudonomics” 



What are Judges Looking For? 

Eligible, Apache 2.0 licensed 

NetflixOSS project pull requests  

Original and useful contribution to NetflixOSS  

Good code quality and structure  

Documentation on how to build and run it  

Code that successfully builds and passes a test suite  

Evidence that code is in use by other projects, or is running in production 

A large number of watchers, stars and forks on github 



What do you win? 

One winner in each of the 10 categories 
Ticket and expenses to attend AWS 

Re:Invent 2013 in Las Vegas 
A Trophy 



How do you enter? 

Get a (free) github account 
Fork github.com/netflix/cloud-prize 

Send us your email address 
Describe and build your entry 

Twitter #cloudprize 



Entrants 

Netflix 

Engineering 

Judges Winners 

Nominations 

Conforms to 
Rules 

Working 
Code 

Community 
Traction 

Categories 

 Registration 
Opened 

March 13 
Github 

Apache 
Licensed 

Contributions 
Github 

Close Entries 
September 15 

Github 

Award 
Ceremony 

Dinner 
November 

AWS 
Re:Invent 

Ten Prize 
Categories 

$10K cash 

$5K AWS 

AWS 
Re:Invent 

Tickets 
Trophy 



Functionality and scale now, portability coming 

 

Moving from parts to a platform in 2013 

 

Netflix is fostering an ecosystem 

 

Rapid Evolution - Low MTBIAMSH 
(Mean Time Between Idea And Making Stuff Happen) 



Takeaway 

  

Netflix is making it easy for everyone to adopt Cloud Native patterns. 

 

Open Source is not just the default, it’s a strategic weapon. 

 
http://netflix.github.com 

http://techblog.netflix.com 

http://slideshare.net/Netflix 

 

http://www.linkedin.com/in/adriancockcroft 

 

@adrianco #netflixcloud @NetflixOSS 


