

Consolidation Case Study Microsoft IT Project Carnation

Lee Donnahoo
Storage Architect
Microsoft IT

Company Overview

- Microsoft IT
 - Manages all IT apps and infrastructure
- Total Storage Managed: 13 PB
- TB per Admin: 900TB
- Storage Utilization: 71%

Total Servers Managed

- Number of apps: ~2500
- Total Server count: ~17,000

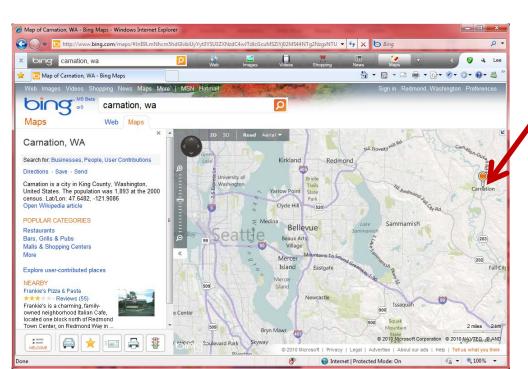
All numbers reported monthly to management

Overview

- Problem Statement
 - Real world numbers
 - Presentation to Execs

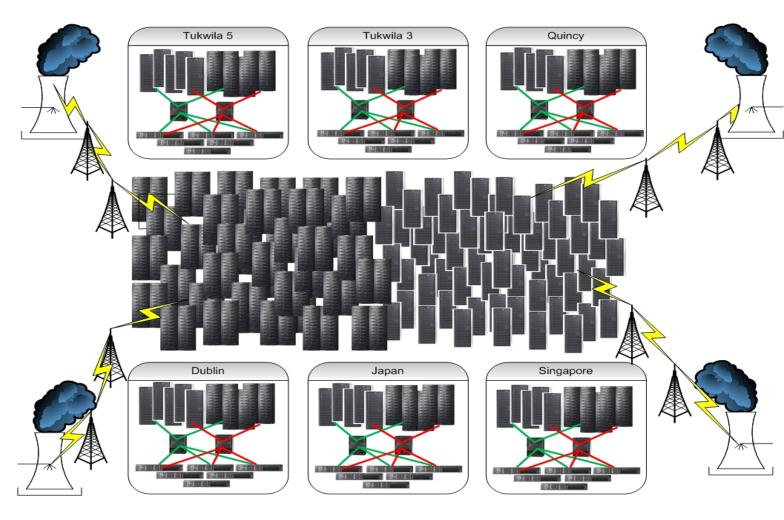
- Implementation Summary
 - Storage Architecture
 - Technologies Used
- Post Mortem Lessons Learned

Problem Statement


- Victim of our own success
 - 250+ Storage Mid-Range Arrays
 - Too many objects to monitor
 - Too many firmware updates to manage
 - Mid-Range Array Uptime Roulette
 - 4x9s X 250 arrays = 1 outage per month
 - 6 Datacenters Worldwide
- 40% of Storage Arrays EOW
 - \$3M warranty bill coming up
- Datacenter Space Constraints

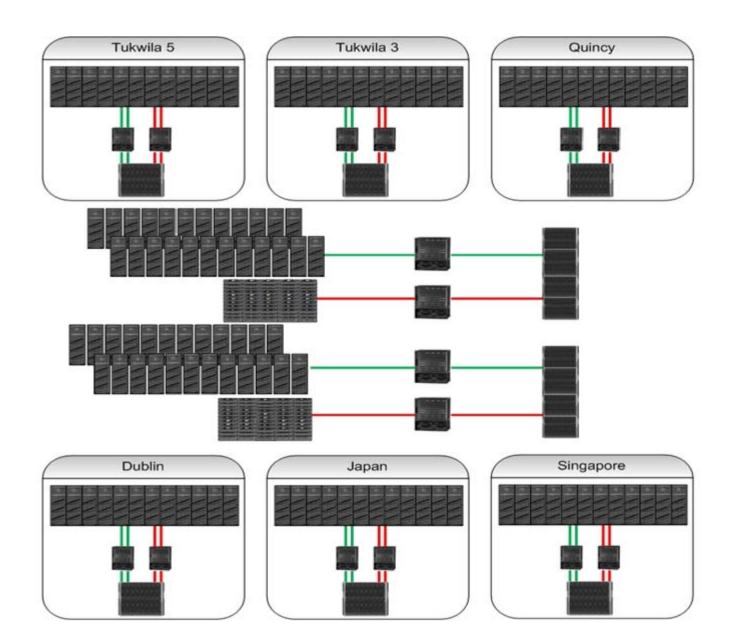
What is "Carnation"?

- Carnation: A city in Western Washington
- Why "Project Carnation"?
 - Power saved could power the city for 1 year



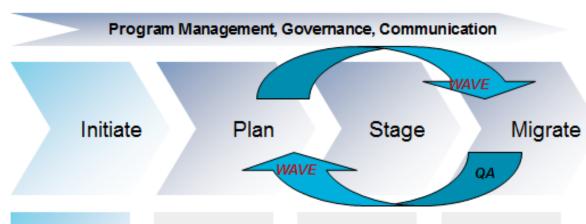
Technology Overview

- Design Principles
 - Reduce the number of managed objects
 - Upgrade from mid-range to enterprise storage
- Specific Technologies
 - Higher Density HDDs
 - 450/600GB vs. 73/146GB
 - Storage Array Virtualization
 - Thin Provisioning
 - Host-based migration software
 - Host-side storage virtualization
 - Allow hosts to migrate independently



Old Environment

New Environment


Success Metrics

Metric	Old	New	Net	Savings
			Actual	Percentage
Number of Arrays				
Mid-Range Arrays	211	3	208	98.6%
Enterprise Arrays		8		
Raw Storage (Petabytes)	7.0	6.6	0.4	5.7%
Physical Hard Drives	35,895	14,472	21,423	59.7%
Racks	295	77	218	73.9%
Energy (kVA)	1034	406	628	60.7%
5 Year Total OPEX				26%

Migration Process

Lather, rinse, repeat...

- The initiate phase will provide time to establish the proper program structure readiness review and planning
- This phase is intended to establish the command center, setup all policies and procedures and identify any early risks or dependencies.
- The Plan phase will occur 2 weeks out from migration for each Wave.
- This phase will be used to set the resource plan and coordination MSIT outage windows
- •The Stage phase will occur 1 week out from migration for each Wave
- This phase will be used to ensure staging the migration activities are ready to go
- The Migrate Phase occurs the week of the migration for each Wave.
- During this phase the data for the assigned servers will be migrated

Lessons Learned

- Issue #1 Data Security
- Issue #2 Performance Tiers
- Issue #3 Scheduling Migrations

Issue #1 – Data Security

Problem: Disposing of 34,000+ hard drives

Resolution:

- 1.Data-erasure services built into proposal
- 2.If erasure fails, physical destruction
- 3. Erased HDDs recycled by vendor

Issue #2 – Performance Tiers

Problem: Some apps have high performance requirements

Resolution:

- 1. Define "Performance Tiers"
- 2. Baseline performance of every attached host

Tier	Description	I/O Threshold	Price
1	Dedicated space	>5000 IOps >80 MB/s	Straight pass-through + consulting cost
2	Shared RAID-1 (400 disks @ RAID-1)	750-5000 IOps 40-80 MB/s	3x shared RAID-6
3	Shared RAID-6 (400 disks @ RAID-6)	<750 lops <40 MB/s	Standard price per GB

Issue #3 – Scheduling Migrations

Problem: Managing downtime windows on tens or hundreds of apps per array is problematic.

- Some array retirements held up by a couple of key apps

Resolution: Work closely with individual business teams, get executive sponsorship and regular visibility.

Future Strategy

- Project Duvall?
 - Migration off EOW/EOL Servers
 - Consolidation using OS Virtualization
- Project Monroe?
 - Replacing EOW/EOL Storage Network
 - Migration to 8Gb FC
 - FCoE?

Questions?

- More about Microsoft IT...
 Real world IT case studies
 - www.microsoft.com/itshowcase
- My contact info: leedo@microsoft.com

