C-EDGE CO-STAR: EFFICACY OF GRAZOPREVIR / ELBASVIR FIXED DOSE COMBINATION FOR 12 WEEKS IN HCV-INFECTED PERSONS WHO INJECT DRUGS ON OPIOID AGONIST THERAPY

<u>Olav Dalqard¹,</u> Gregory J. Dore², Frederick Altice³, Alain H. Litwin⁴, Jason Grebely², Edward J. Gane⁵, Oren Shibolet⁶, Anne Luetkemeyer⁷, Ronald Nahass⁸, Cheng-Yuan Peng⁹, Brian Conway¹⁰, Isaias Noel Gendrano¹¹, Hsueh-Cheng Huang¹¹, Erluo Chen¹¹, Bach-Yen Nguyen¹¹, Janice Wahl¹¹, Eliav Barr¹¹, Michael Robertson¹¹, Heather L. Platt¹¹

¹Institute of Clinical Medicine, Oslo, Norway; ²The Kirby Institute, University of New South Wales, Sydney, NSW, Australia; ³Yale School of Medicine, New Haven, CT, USA; ⁴Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA; ⁵Auckland Clinical Studies, Auckland, New Zealand; ⁶Tel-Aviv Medical Center, Tel Aviv, Israel; ⁷University of California, San Francisco, San Francisco, CA, USA; ⁸ID Care, Hillsborough, CA, USA; ⁹China Medical University Hospital, Taichung, Taiwan; ¹⁰Vancouver Infectious Diseases Centre, Vancouver, BC, Canada; ¹¹Merck & Co., Inc., Kenilworth, NJ, USA

ACKNOWLEDGEMENTS

We extend our gratitude to the patients, their families, investigators and site personnel who participated in this study.

Australia: Greg Dore, David Iser, Joseph Sasadeusz, Martin Weltman; <u>Canada:</u> Brian Conway, Roger P. LeBlanc, Daniele Longpre; <u>France:</u> Jean-Pierre Bronowicki, Joseph Moussalli, Fabien Zoulim; <u>Germany:</u> Andreas Trein, Albrecht Stoehr; <u>Israel:</u> Oren Shibolet; <u>Netherlands:</u> H. W. Reesink; <u>New Zealand:</u> Edward Gane; <u>Norway:</u> Olav Dalgard, Hege Kileng; <u>Romania:</u> Adrian Octavian Abagiu, Emanoil Ceausu, Adrian Streinu-Cercel; <u>Spain:</u> Juan Ignacio Arenas Ruiz-Tapiador, Jose Luis Calleja Panero, Juan Antonio Pineda, Conrado Fernandez Rodriguez, Juan Turnes Vazquez; <u>Taiwan:</u> Wan-Long Chuang, Cheng-Yuan Peng, Sheng-Shun Yang; <u>United</u> <u>Kingdom:</u> Kosh Agarwal, David Bell, Ashley Brown, John Dillon, Daniel M.H. Forton, Andrew Ustianowski; <u>United States:</u> Frederick L. Altice, David Michael Asmuth, Kathleen K. Casey, James N. Cooper, Stuart C. Gordon, Paul Y. Kwo, Jacob Paul Lalezari, William M. Lee, Alain H. Litwin, Annie Luetkemeyer, Andrew J. Muir, Ronald G. Nahass, Grisell Ortiz-Lasanta, K. Rajender Reddy, Kenneth E. Sherman, Jihad Slim, Mark S. Sulkowski, Andrew H. Talal, Joesph Leo Yozviak

This study and medical writing support were funded by Merck & Co., Inc.

MY DISCLOSURES

Research funding: Gilead, Merck and Abbvie Advisory board: Gilead, Merck and Abbvie

BACKGROUND AND AIM

- Injection drug use is the major risk factor for HCV epidemic in most high income countries, with people who inject drugs (PWID) accounting for 50-80% of HCV infections¹
- Despite similar HCV treatment outcomes with IFNcontaining therapy^{2,3}, PWID with current drug use have been excluded from IFN-free DAA development programs

1. Hajarizadeh B, Grebely J, and Dore GJ. Nat Rev Gastro Hepatol 2013;10:553-62. .

^{2.} Aspinall A, et al. Clin Infect Dis 2013; 57:S80-S89.

- Broad activity versus most HCV genotypes in vitro¹⁻³
- Efficacious in treatment-naive & treatment-experienced patients, cirrhotic and non-cirrhotic patients, patients with HIV/HCV co-infection, and patients with end-stage kidney disease⁴⁻⁶
- 1. Summa V, et al. Antimicrobial Agent Chemother 2012:56;4161;
- 2. Coburn CA, et al. ChemMedChem 2013; 8: 1930;
- Harper S, et al. ACS Med Chem Lett. 2012 Mar 2;3(4):332;
 Lawitz et al., Lancet 2015; 385:1075
- Sulkowski M et al. Lancet. 2014;385:1087-1097.
- Zeuzem et al., Ann Int Med 2015; 163:1;
 Forns X et al. J Hepatol. 2015;63:564-572.
- Portis X et al. J Heputol. 2015;63:564-572.
 Buti M et al. Clin Infect Dis. 2016;62:32-36.
- 9. Rockstroh JK et al. Lancet HIV. 2015; 2:e319-e327.
- 10. Roth D et al. Lancet. 2015;386:1537-1545.

TRIAL DESIGN

- Phase 3, randomized, parallel-group, placebo-controlled, double-blind trial
- Treatment naïve, GT1, 4, 6; mixed genotypes of 1, 4, and 6 allowed
- On opiate agonist therapy (OAT) for at least 3 months, and consistently kept at least 80% of scheduled appointments while on OAT

EFFICACY ANALYSES

- Endpoints
 - Primary endpoint: SVR12 (HCV RNA <15 IU/mL*)
 - Secondary endpoint: SVR24
- Analysis Population = Modified Full Analysis Set (mFAS)
 - Excludes patients who discontinued the trial for non-treatment related reasons (e.g., lost-to-follow-up and or discontinued due to reasons other than virologic failure)
 - Patients with data consistent with clearance of baseline infection and HCV RNA >15 IU/mL consistent with reinfection are counted as successes
- Virologic Analysis Methodology[†]
 - Comparison of samples at baseline and at viral recurrence
 - » Genotype
 - » Phylogenetic analysis
 - » Next generation / ultra deep sequencing

*HCV RNA determined with COBAS™ AmpliPrep/COBAS™ Taqman™ HCV Test, v2.0® 'Genotype determined by Abbott RealTime HCV Genotype II. Sequences analyzed for phylogenetic relationship using the software package MUSCLE, and alignment estimated using Maximum Likelihood phylogeny in the software package PhyML. Next generation sequencing performed on sequences at the NS3 and NS5A regions with ~1% sensitivity threshold.

DEMOGRAPHICS

	Immediate treatment arm	Deferred treatment arm	Total				
	(n=201)	(n=100)	(N=301)				
	n (%)	n (%)	n (%)				
Male	153 (76.1)	77 (77.0)	230 (76.4)				
Age [median yrs; (range)]	48 (23-66)	47 (24-64)	48 (23-66)				
Race							
White	158 (78.6)	84 (84.0)	242 (80.4)				
African American	31 (15.4) 7 (7.0)		38 (12.6)				
Asian/Other	12 (6.0) 9 (9.0)		21 (7.0)				
Baseline HCV RNA (IU/mL)							
>2,000,000 IU/mL	114 (56.7)	51 (51.0)	165 (54.8)				
HCV Genotype							
1a	154 (76.6)	75 (75.0)	229 (76.1)				
1b	30 (14.9)	15 (15.0)	45 (15.0)				
4	12 (6.0)	6 (6.0)	18 (6.0)				
6	5 (2.5)	4 (4.0)	9 (3.0)				
Cirrhosis							
Yes (F4)	40 (19.9)	22 (22.0)	62 (20.6)				
HCV/HIV Co-infected	16 (8.0)	5 (5.0)	21 (7.0)				
Urine drug screen (excluding opiate agonist therapy)							
positive at Day 1	122 (60.7)	52 (52.0)	174 (57.8)				

EFFICACY: SUSTAINED VIROLOGIC RESPONSE MODIFIED FULL ANALYSIS SET (mFAS)

In the FAS (where discontinuations were counted as failures), SVR12 was 91.5% in the ITG and 85.6% in the DTG, SVR24 was 89.5% in the ITG and 85.3% in the DTG.

SVR12 IN THE IMMEDIATE TREATMENT GROUP: SUBGROUP ANALYSIS OF MODIFIED FULL ANALYSIS SET (mFAS)

VIRAL RECURRENCE: PROBABLE REINFECTIONS

- In total, 6 patients were successfully treated for their baseline virus, but at the time of virologic failure had a different genotype, subtype, or viral strain detected
- 4/6 patients had a different genotype at viral recurrence compared to baseline
 - » The genotype found at viral recurrence was not amplified in any of the baseline samples using NGS / ultra deep sequencing and genotype specific primers.
- In all 6 cases, phylogenetic analysis of the nucleotide sequences support phylogenetically distinct viral strains at follow-up compared to baseline
- Following viral recurrence, 3 patients had undetectable HCV RNA without further treatment

PROBABLE REINFECTIONS

Demographics	Fibrosis Stage	GT at Baseline	UDS at Baseline*	UDS at TW12*	Time point of detectable HCV RNA	GT at Follow-up
48 year-old Asian male	NC	1a	BZP, OPA	BZP	FW8	6a
33 year-old white female	NC	1a		AMP, OPA	FW8	1a
55 year-old white female	С	1a	BZP, OPA	BZP, OPA	FW8	3a
45 year-old Asian male	NC	6a		OPA	FW8	1b
37 year-old Asian female	NC	6a	AMP, BZP, OPA	AMP, BZP, OPA	FW8	6a
33 year-old white male	NC	1b			FW24	3a

*excludes opiate agonist therapy;

AMP=amphetamines; BZP=benzodiazepines; OPA=opiates; UDS = urine drug screen

INCIDENCE OF REINFECTION

ITG From End of Treatment Through FW12:

- 5 reinfections out of 201 total patients
- 47.4 person-years of follow-up
- 10.5 reinfections per 100 person years (95% CI: 3.4, 24.6)

ITG and DTG From End of Treatment Through FW24:

- 6 reinfections out of 296 total patients (immediate and deferred treatment groups)
- 130.6 person-years of follow-up
- 4.6 reinfections per 100 person years (95% CI: 1.7, 10.0)

URINE DRUG SCREEN RESULTS

cannabinoids, cocaine, opiates, phencyclidine, propoxyphene

ADHERENCE

SAFETY DURING INITIAL TREATMENT PERIOD AND FIRST 14 DAYS OF FOLLOW-UP

	Immediate Treatment Arm (Active), n=201	Deferred Treatment Arm (Placebo), n=100	Total (n =301)
Serious AEs, n (%)	7 (3.5)	4 (4.0)	11 (3.7)
Serious Drug Related AEs, n (%)	1 (0.5)	1 (1.0)	2 (0.7)
Discontinuations, n (%)	1 (0.5)	1 (1.0)	2 (0.7)
Deaths, n (%)	0	1 (1.0)	1 (0.3)
Any AE, n (%)	167 (83.1)	83 (83.0)	250 (83.0)
Fatigue	32 (15.9)	20 (20.0)	52 (17.3)
Headache	25 (12.4)	13 (13.0)	38 (12.6)
Nausea	22 (10.9)	9 (9.0)	31 (10.3)
Diarrhea	19 (9.5)	9 (9.0)	28 (9.3)
Late ALT/AST > 5 x ULN, n (%)	0	0	0
Bilirubin >2.6 x ULN, n (%)	0	0	0
Hemoglobin <8.5 gm/dL, n (%)	0	1 (1.0)	1 (0.3)
Creatinine >2.5x baseline, n (%)	0	0	0

CONCLUSIONS

- EBR/GZR demonstrated high efficacy in GT1 and 4infected patients receiving opiate agonist therapy
 - Limited by small number of GT6-infected patients
- Acceptable safety profile with comparable adverse event rates between the immediate- and deferredtreatment arms
- High study medication adherence
- Stable ongoing drug use throughout the initial treatment phase in both groups
- Data demonstrate support for treating HCV among subjects receiving OAT

