Effects of acute ketamine infusion on visual working memory encoding: a study using ERPs

Corinna Haenschel

Psychology, City University London, UK

Partly Funded by: the Welsh Institute of Cognitive Neuroscience

Schizophrenia: The relevance of cognitive deficits for the understanding of schizophrenia

- Schizophrenia is associated with acute psychiatric symptoms (i.e. hallucinations, delusions).
- Even when free of these symptoms (which is most of the time), patients suffer from severe problems in day to day life resulting in tremendous personal and economic costs.
- These appear to be highly related to cognitive deficits associated with the disorder.
- Working Memory is one of the most fundamental processes in performing many daily tasks.
- Impaired Visual Working memory (WM) is a core deficit in schizophrenia.
- Treating WM impairments may have important practical benefits for patients (both behaviourally and with drugs).

Impaired visual working memory (WM) is a core deficit in schizophrenia

Visual working memory deficits in schizophrenia: Evidence from fMRI and EEG

Encoding ⇒ Maintenance ⇒ Retrieval

- •WM deficits have mostly been attributed to maintenance and executive functions associated with prefrontal cortical dysfunction.
- More recently emphasis on the encoding stage of WM and possible deficits occurring at this stage.

Delayed Discrimination Task

Behavioural data: Early Onset Sz

WM Performance in the SZ-spectrum

ERPs: The importance of Encoding for successful WM and its Dysfunctions

P1 ERP component increases with load predicting performance in controls

but is severely reduced in early onset schizophrenia.

ERPs: P1 as a biomarker of the disorder?

P1 ERP component increases with load predicting performance in controls

but is severely reduced in early onset schizophrenia.

fMRI revealed reduced activation in the middle occipital gyrus in early onset schizophrenia.

Functional connectivity between frontal and visual areas during **Encoding**

Reduced functional connectivity between left VLPFC and the left LOC & between right extrastriate visual cortex and left early visual cortex in patients!

Bittner, Linden, Haenschel, 2014

Neurochemical background of WM encoding?

Disturbances in Dopamine, GABA, Glutamate (NMDA receptors) have been found in schizophrenia.

DA Lewis: http://www.ccnmd.pitt.edu/Pages/Research/researchov.html

Ketamine

- Ketamine is a well-established pharmacological model of schizophrenia
- This has been attributed to its NMDA antagonism and likely involves disinhibition of glutamatergic pyramidal neurons and consequent downstream dysregulation of the striatal dopamine system.

Question: Will ketamine reproduce both the working memory and visual information processing deficits?

Methods: WM & EEG

•Randomised & Blind: Continuous Intravenous infusion of placebo (0.9% normal saline) or Ketamine (100ng/ml) Infusion randomised by Pharmacy.

CADS: Clinician Administered Dissociative Symptom Scale; BPRS: Brief Psychiatric Rating scale

Methods EEG ketamine

	Drug	N	Mean	SD	SE
BPRS	Ketamine	22	19.9091	2.06810	.44092
	Placebo	22	18.4545	1.10096	.23473
CADSS	Ketamine	22	4.1818	3.85000	.82082
	Placebo	22	1.4545	1.81861	.38773
Age	Ketamine	22	23.6818	6.02682	1.28492
	Placebo	22	23.4091	3.92379	.83655
Education	Ketamine	22	15.1818	2.15222	.45885
	Placebo	22	15.8636	1.55212	.33091
SPQ	Ketamine	22	3.1364	5.04546	1.07570
	Placebo	22	6.3636	6.12991	1.30690
NART	Ketamine	18	114.0556	4.42895	1.04391
	Placebo	21	114.0381	5.62419	1.22730

	t	df	Sig. (2-tailed)
BPRS	2.912	32.018	.006
CADSS	3.004	29.927	.005
Age	.178	42	.860
Education	-1.205	42	.235
SPQ	-1.907	42	.063
NART	.011	37	.992

Behavioural results

44 healthy volunteers (22 ketamine, 22 placebo)

Group effect: Clinician Administered Dissociative States Scale (CADSS): p=0.005 & BPRS: p= .006

Koychev, Deakin, El-Deredy, Haenschel, in prep.

Results: ERP occipital electrodes

* F(1,42) = 6.673, p = .04; partial $eta^2 = 0.1$

Effects of acute Ketamine on WM encoding

> But a later decrease in P300

Koychev, Deakin, El-Deredy, Haenschel, in prep.

Discussion

- Ketamine induces cognitive impairment similar to the one found in psychosis and schizotypy
- Early visual evoked responses are however augmented
- Later EEG components (P300) are significantly reduced in amplitude
- Visual cortex disinhibition caused by ketamine associated with higher order disturbance?

Acknowledgements

Thank you for your attention!

P1 as a biomarker: SCHIZOTYPY

Combining measures of electrophysiology and neurotransmitters in humans?

- Different ways of investigating possible relationship
 - Use measures of EEG/MEG and MRspectroscopy to measure neurotransmitter concentration (Lally et al., 2014)
 - Using drugs that block or enhance specific transmitters, for example ketamine, a NMDA antagonists

Methods

The influence of ketamine on WM using EEG.

Participants were randomised to receive an intravenous infusion of placebo (0.9% normal saline) or Ketamine.

Ketamine was administered to achieve a dose of 100ng/ml