

In Kooperation mit

Präsentiert von

Big Data oder Wissen als Spezialanfertigung – Transparenz und Zuverlässigkeit

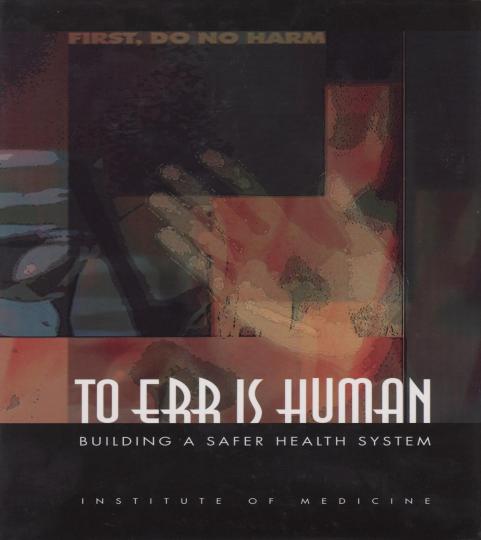
Klaus-Peter Adlassnig

Medexter Healthcare Borschkegasse 7/5, A-1090 Vienna www.medexter.com and

Section for Artificial Intelligence and Decision Support Center for Medical Statistics, Informatics, and Intelligent Systems Medical University of Vienna Spitalgasse 23, A-1090 Vienna www.meduniwien.ac.at/kpa

eHealth Summit Austria, Schönbrunn Palace, Vienna, 25 May 2016

Digitalization of clinical medicine


- Stage I: Digitizing patient medical data
 - EHRs, EMRs, Health Apps, ...
- Stage II: Digitizing clinical workflows
 - In-patient, out-patient, home
- Stage III: Digitizing medical knowledge
 - Big data vs. knowledge design

Clinical decision support—Applying knowledge to data

Patient safety

Quality assurance

Cost reduction

- studies in Colorado and Utah and in New York (1997)
 - errors in the delivery of health care leading to the death of as many as 98,000 US citizens annually
- causes of errors
 - error or deay in diagnosis
 - fail errors y indicated tests
 - use or ded tests or therapy
 - failure to act on results of testing or monitoring
 - error in the performance of a test, procedure, or operation
 - error in administering the treatment
 - error in the dose or method of using a drug
 - avoidable delay in treatment or in responding to an abnormal test
 - **prevention** indicated) care

 - equipment failure
- prevention of errors
 - we must systematically design safety into processes of care

Big data vs. knowledge design

IBM Watson Health vs. Medexter Health Knowledge

Big data vs. knowledge design

big raw data

data mining

CDS

induction

empirical

big document data

text mining

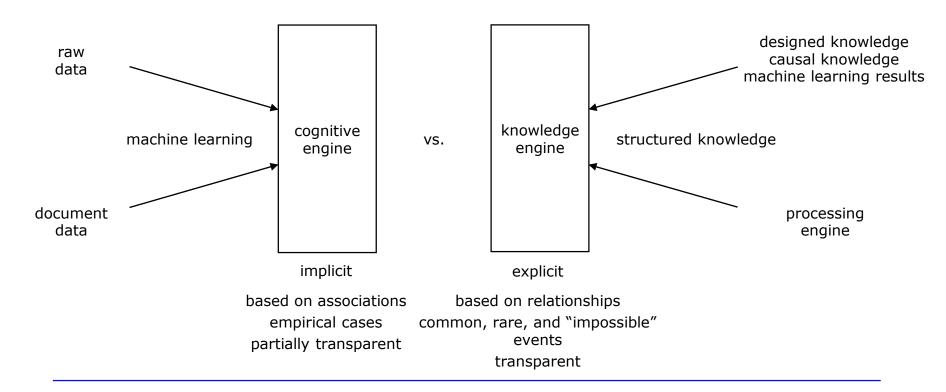
CDS

induction

mixed

structured knowledge design

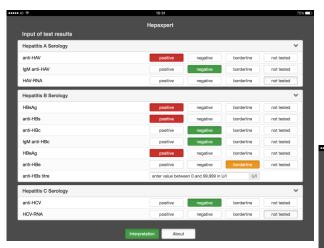
knowledge-based systems

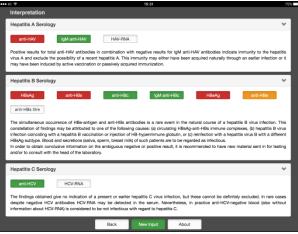

CDS

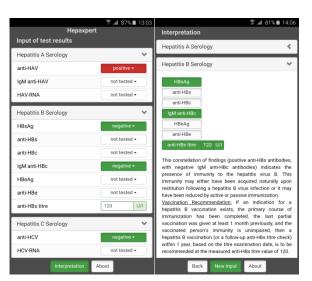
deduction

axiomatic

IBM Watson Health vs. Medexter Health Knowledge



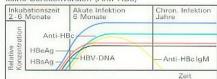


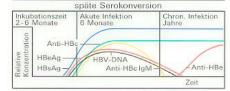

Hepaxpert

Knowledge-based interpretation of hepatitis serology test results

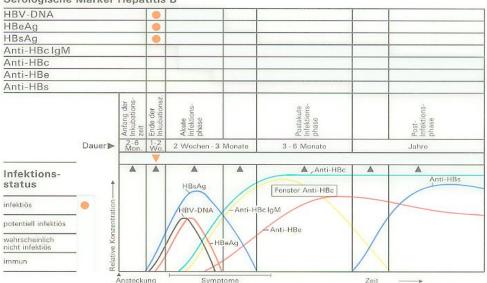
Automated interpretation of hepatitis serology test results

- includes frequent, rare, as well as inconsistent combinations
- complete coverage of the problem domains
- e.g., hepatitis B serology: about 150 rules in 3 layers for 61,440 possible combinations

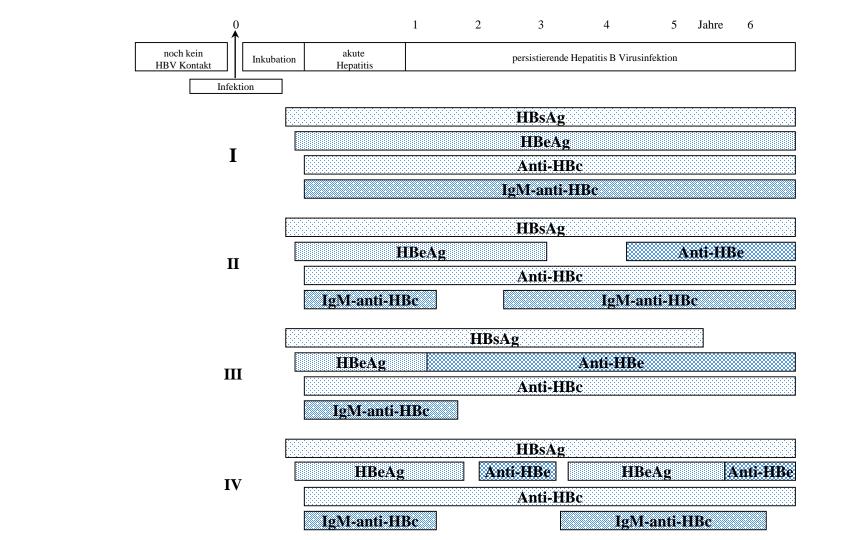



Diagnostisches Profil Hepatitis B

Dieser serologische Verlauf trifft bei 75 - 80 % der Patienten mit akuter Hepatitis B auf.


Profil der serologischen Marker eines chronischen Trägers:

keine Serokonversion (Anti-HBe)



Serologische Marker Hepatitis B

Dieser serologische Verlauf trifft bei 75 - 80 % der Patienten mit akuter Hepatitis B auf.

One of the rules to interpret clinically relevant findings (rule premises form equivalent classes)

RULE 103:

IF one of the following 100 combinations

	HBsAg	anti-HBs	anti-HBc		Ig	М ar	ti-H	Вс	HBeAg		anti-	-HBe	!
+	•	+	- ±			_	±	•	+		_	±	•
+	•	+	+	•	+	_	\pm	•	+	+	_	\pm	•

THEN

The simultaneous occurrence of HBe-antigen and anti-HBs antibodies is a rare event in the natural course of a hepatitis B virus infection. This constellation of findings may be attributed to one of the following causes: (a) circulating HBsAg-anti-HBs immune complexes, (b) hepatitis B virus infection coinciding with a hepatitis B vaccination or injection of HB-hyperimmune globulin, or (c) reinfection with a hepatitis virus B with a different HBsAg subtype. Blood and secretions (saliva, sperm, breast milk) of such patients are to be regarded as infectious.

Regel zur Interpretation von "inkonsistente Befunde"

REGEL 3:

WENN

	HBs	Ag			anti [.]	-HBs	;	anti	-НВс	IgM	anti-HBc		НВе	eAg		anti	-НВе)
+			•	+	_	±	•	· –	±	+		+	_	±	•		±	•
	_	±		+	_	±	•	_	±	+			_	±	•	_	±	•

DANN

Das Befundmuster enthält Widersprüche, da definitionsgemäß bei Vorliegen von IgM anti-HBc-Antikörpern auch die Anti-HBc-Gesamtantikörper positiv sein müssten. Neueinsendung von Untersuchungsmaterial bzw. Rücksprache mit dem Laborleiter wird empfohlen.

1	524	25	0,6%	19	18%
2	1.084	39	1,0%	28	27%
3	1.665	52	1,3%	32	30%
4	2.169	65	1,6%	35	33%
5	2.842	75	1,8%	37	35%
6	3,402	83	2,0%	40	38%
7	4.037	87	2,1%	41	39%
8	4.559	93	2,3%	42	40%
9	5.115	98	2,4%	45	43%
10	5.624	102	2,5%	46	44%
11	6.021	103	2,5%	46	44%
12	6.399	105	2,6%	47	45%
13	6.896	112	2,7%	50	48%
14	7.575	115	2,8%	50	48%
15	8.219	118	2,9%	50	48%
16	8.699	124	3,0%	51	49%
17	9.327	129	3,2%	51	49%
18	9.890	131	3,2%	51	49%
19	10.439	134	3,3%	53	50%
20	11.303	135	3,3%	53	50%

Monate Anforderungen

0

0

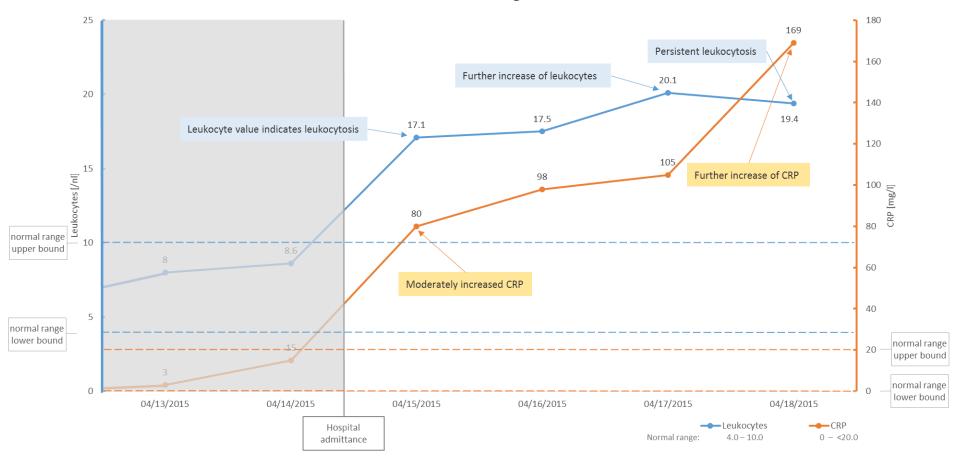
Müster

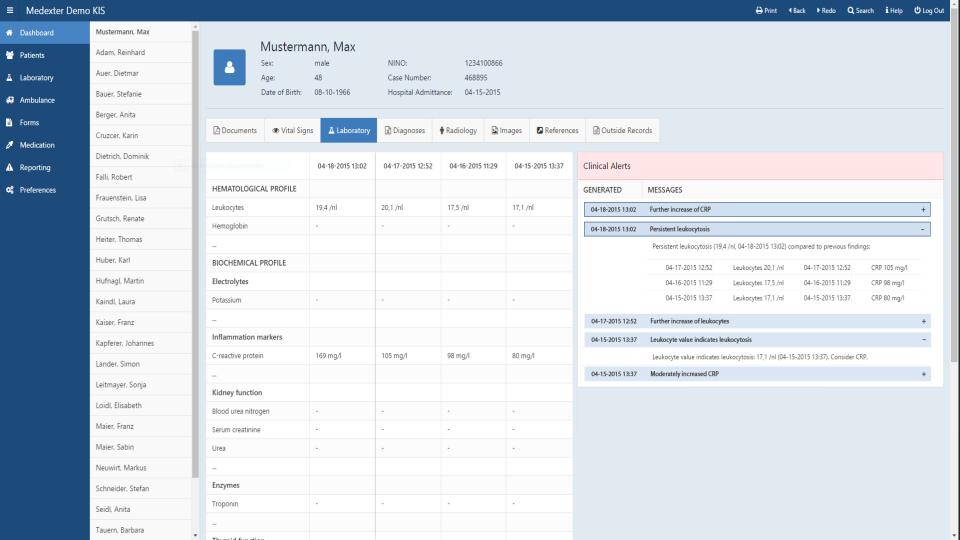
(von 4.095)

0,0%

Regeln

(von 105)


Häufigkeit des Auftretens von Befundmustern und Regeln für die Hepatitis B im Verlauf von 20 Monaten



Clinical alerts

Ward-specific, highly-adaptive reminders

Inflammation Monitoring and Alerts

Summary

- Big data mining
 - Huge amount of data available
 - Erroneous cases are usually part of the data
 - Empirical data are incomplete
 - Low transparency
- Big document mining
 - Huge amount of documents available
 - Documents are humanly preprocessed and checked
 - Learning from erroneous or outdated documents
 - Medium transparency
- Knowledge design
 - Carefully designed knowledge
 - Contains explicit causal explanations
 - Includes rare and outlier cases
 - High transparency