CHC-NSC 2018

www.chc-nsc2018.ca

Victoria, B.C. March 26-29, 2018 Victoria, C.B. 26 au 29 mars 2018 Land and Sea Shaping the World Terre et Mer Façonnant le Monde

ACLS·AATC

Topographic-Bathymetric Lidar Total Propagated Uncertainty Modeling

SSV+CA

ANADIENNE D'Y

Christopher Parrish, Gretchen Imahori, Stephen White, Firat Eren, Jaehoon Jung, Nick Forfinski-Sarkozi, Tim Kammerer, Rudy Troche, and Jamie Kum

#chcnsc2018

Project Overview

- Motivation
 - NOAA/NGS and partners currently collecting topo-bathy lidar data for mapping the National Shoreline
 - Growing interest in also using the lidar bathymetry for nautical chart updates
 - IHO S-44 TPU requirement: must account for *"all contributing measurement uncertainties"* using a *"statistical method, combining all uncertainty sources, for determining positioning uncertainty...at the 95% confidence level"* (IHO, 2008).
- Goals:
 - Develop, test and deploy *operational TPU software* for topo-bathy lidar
 - Start with Riegl VQ-880-G, then extend to other systems operated by JALBTCX partner agencies

TPU Approach

Subaerial component: Laser geo-location equation

$$\begin{bmatrix} X_L \\ Y_L \\ Z_L \end{bmatrix} = \begin{bmatrix} X_T \\ Y_T \\ Z_T \end{bmatrix} + \mathbf{R}_b^m \mathbf{M}_{lb}^b \begin{bmatrix} 0 \\ 0 \\ -\rho \end{bmatrix} \qquad \begin{bmatrix} X_L \\ Y_L \\ Z_L \end{bmatrix} = \begin{bmatrix} X_T - \rho(r_{11}m_{13} + r_{12}m_{23} + r_{13}m_{33}) \\ Y_T - \rho(r_{21}m_{13} + r_{22}m_{23} + r_{23}m_{33}) \\ Z_T - \rho(r_{31}m_{13} + r_{32}m_{23} + r_{33}m_{33}) \end{bmatrix} + \begin{bmatrix} \Delta X \\ \Delta Y \\ \Delta Z \end{bmatrix}_{offset} = \begin{bmatrix} f_1^N \\ f_2^N \\ f_3^N \end{bmatrix}$$

$$\begin{bmatrix} X_L \\ Y_L \\ Z_L \end{bmatrix} = \begin{bmatrix} X_T \\ Y_T \\ Z_T \end{bmatrix} + \begin{bmatrix} \cosh & -\sin h & 0 \\ \sin h & \cosh & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos p & 0 & \sin p \\ 0 & 1 & 0 \\ -\sin p & 0 & \cos p \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos r & -\sin r \\ 0 & \sin r & \cos r \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -\rho \end{bmatrix}$$

$$J = \begin{bmatrix} \frac{\partial f_1^N}{\partial \alpha} & \frac{\partial f_1^N}{\partial \beta} & \frac{\partial f_1^N}{\partial r} & \frac{\partial f_1^N}{\partial p} & \frac{\partial f_1^N}{\partial h} & \frac{\partial f_1^N}{\partial x} & \frac{\partial f_1^N}{\partial y} & \frac{\partial f_1^N}{\partial z} & \frac{\partial f_1^N}{\partial \rho} \\ \frac{\partial f_2^N}{\partial \alpha} & \frac{\partial f_2^N}{\partial \beta} & \frac{\partial f_2^N}{\partial r} & \frac{\partial f_2^N}{\partial p} & \frac{\partial f_2^N}{\partial h} & \frac{\partial f_2^N}{\partial x} & \frac{\partial f_2^N}{\partial y} & \frac{\partial f_2^N}{\partial z} & \frac{\partial f_2^N}{\partial \rho} \\ \frac{\partial f_3^N}{\partial \alpha} & \frac{\partial f_3^N}{\partial \beta} & \frac{\partial f_3^N}{\partial r} & \frac{\partial f_3^N}{\partial p} & \frac{\partial f_3^N}{\partial h} & \frac{\partial f_3^N}{\partial x} & \frac{\partial f_3^N}{\partial y} & \frac{\partial f_3^N}{\partial z} & \frac{\partial f_3^N}{\partial \rho} \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} \sigma_X^2 & \sigma_{XY} & \sigma_{XZ} \\ \sigma_{XY} & \sigma_Y^2 & \sigma_{YZ} \\ \sigma_{XZ} & \sigma_{YZ} & \sigma_Z^2 \end{bmatrix} = J \begin{bmatrix} \sigma_\alpha & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_\rho \end{bmatrix} J^{\mathrm{T}}$$

M: DCM: laser scanner to body frameR: DCM: body frame to local level frame*f*: geo-location equation

 $\sigma_x, \sigma_y, \sigma_z, \sigma_r, \sigma_p, \sigma_h$: trajectory uncertainties: position and orientation (from SBETs) $\sigma_{\alpha}, \sigma_{\beta}$: angular uncertainties of scanner (from specs and discussion with Riegl) σ_{ρ} : range uncertainty (from specs)

Subaqueous component: Monte Carlo ray tracing

What happens to the laser beam as it travels through the environment?

- Complex interactions → Monte Carlo Ray tracing algorithm
 - Water surface refraction
 - Scattering and absorption in water column
 - Laser beam geometry and energy change in water column
 - How do these factors impact seafloor uncertainty?

Movie: Wind speed 3 m/s 100 rays ∆t =0.1 sec

76 GUI_topobathy_list

RIEGL VQ-880-G TOTAL PROPAGATED UNCERTAINTY (TPU) PROGRAM v1.0 Data Directories

X

LAS TOOLS BIN: C:\LAStools\bin

SBET FILES: D:\NGS TPU Tool Test\Key West data set\FL1613_Outer_Reef_TPU_Sample

ORIGINAL LAS TILES: D:\NGS TPU Tool Test\Key West data set\FL1613_Outer_Reef_TPU_Sample

OUTPUT LAS FILES: D:\NGS TPU Tool Test\Key West data set\tpu_tool_output

SUB-AQUEOUS Parameters Water Surface Turbidity Clear Riegl VQ-880-G Model (ECKV spectrum) Clear-Moderate O Moderate Calm-light air (0-2 knots) C Light breeze (3-6 knots) O Moderate-High Gentle Breeze (7-10 knots) O High Moderate Breeze (11-15 knots) C Fresh Breeze (16-20 knots) Regional VDatum Maximum Cumulative Uncertainty (MCU) VDatum Region Florida - South Florida, Naples to Fort Lauderdale FL, and Florida Bay Process Buttons Pre-Process Tiles ∨ Load SBET Files Process TPU

Outputs

PARAMETERS	3				
vater surf vind kd /Datum reg /Datum reg	Tace : ; ; gion : gion MCU :	Model (ECK Light bree Clear Florida - J 0.102 (m)	V spectrum) ze (3-6 knot: Apalachicola	to Anclote 1	Кеу
TOTAL SIGN	1A Z TPU (ME	TERS) SUMMAR	Y		
FILE ID	MIN	MAX	MEAN	STDDEV	COUNT
C	0.12694	0.19020	0.15310	0.01531	204983
1	0.12691	0.20547	0.15702	0.01978	567315
2	0.12624	0.21894	0.19762	0.00601	92338
3	0.12712	0.22121	0.16592	0.02391	390393
1	0.12713	0.21942	0.16005	0.02127	560137
IDS	(BATHY-ONLY	ELIGHT-LINE	EILES)		
) - T:/NGS	5 TPU/FL1613	Outer Reef	TPU Sample/la	as/OutputLas	\2016 413000e 2708500n SORTED 00000
1 - I:/NGS	TPU/FL1613	Outer Reef	TPU Sample/1a	as/OutputLas	\2016 413000e 2708500n SORTED 00000
2 - I:/NGS	TPU/FL1613	Outer Reef	TPU Sample/la	as/OutputLas	\2016 413000e 2708500n SORTED 00000
) 2016 412000 - 2700 E00m CODWED 00000
3 - I:/NGS	5 TPU/FL1613	Outer Reer	rru sampie/ia	as/outputtas	\2016 413000e 2708300n SORTED 00000

TPU Metadata File

Per-point TPU (displayed as uncertainty surface

Summary and next steps:

- Version 1.0 delivered to NOAA/NGS
 - Currently being evaluated for operational use
- Continuing to improve model by:
 - Accounting for additional component uncertainties
 - Boresight angle uncertainties
 - Improving how some component uncertainties are modeled
 - Range and scan angle uncertainties
- Extending to other bathy lidar systems
 - Leica Chiroptera II, EAARL-C, others, ...
- Assessing outputs for a number of project sites to gain enhanced understanding of TPU and the environment

Acknowledgements

- Mike Aslaksen, NOAA NGS
- Brian Calder, Larry Mayer, and Andy Armstrong, UNH CCOM-JHC
- Minsu Kim, USGS

#chcnsc2018

Backup Slides

Initial study site

- Southwest Florida
 - Cape Romano/Marco Island/Gullivan Bay
 - > 150 km²
- Flown by NOAA/NGS/RSD in May 2016 with Riegl VQ-880-G
- Data provided by NOAA
 - SBET ascii output with standard deviations: σ_X , σ_Y , σ_Z , σ_r , σ_p , σ_h
 - Wind speed, direction and fetch
 - NOAA NCCOS (Stumpf, et al.) K_d grid product
 - LAS file with Riegl reflectance and pulse shape deviation in LAS ExtraBytes

Combining subaerial and subaqueous uncertainties

- Surface σ_x , σ_y and σ_z values are determined through geolocation equations
- Generate an uncertainty ellipsoid around a single laser point on the water surface.
- σ_x , σ_y and σ_z propagated to the seafloor through MC simulations

Uncertainty ellipsoids on water surface (top) and seafloor (bottom)

Effects of water turbidity:

Key to reasonable runtime: polynomial fits of σ_z (subaqueous) to input parameters!

- Determined that polynomial surface fits of σ_z to water clarity, depth and wind speed (or Riegl water surface) provide good results
- Eliminates need to time-consuming Monte Carlo ray tracing each time user hits: "Compute TPU"
 - Just need to pre-compute and store polynomial coefficients

