Catch the On-Site, Organics Recycling Showdown

Aerobic Composting vs. Anaerobic Digestion

12th Annual Energy/Facilities Connections Conference Leavenworth, WA May 2, 2016

www.energy.wsu.edu

Today's Program

- 1. On-site organics management examples
 - Washington projects
 - Washington companies
- 2. On-site management decision steps
 - Information gathering
 - Processing potential
 - Financial analyses
 - Next steps
- 3. Resources

Food Recovery Hierarchy

MOST PREFERRED

Source Reduction Reduce the volume of surplus food generated

Feed Hungry People Donate extra food to food banks, soup kitchens, and shelters

> Feed Animals Divert food scraps to animal feed

Industrial Uses

Provide waste oils for rendering and fuel conversion, and food scraps for digestion to recover energy

> Composting Create a nutrient-rich soil amendment

Landfill/ Incineration Last resort to disposal

Sources: Rethink Waste Australia and US EPA

1. ON-SITE ORGANICS MANAGEMENT

- Food processors or wholesalers
- Hospitals, group homes, and other institutions
- Schools and universities
- Corrections facilities
- Military bases
- Hotels, camps, and resorts
- Farms (especially as part of other facilities)

Washington Projects

Monroe Corrections

Photos: Everett Herald

Walla Walla Corrections

Photo: O2 Compost

Cedar Creek Corrections

Photos: DT Environmental

University Projects

- Many universities and colleges participate in green waste collection programs, diverting tons of food scraps and landscaping debris
- On-site composting
 - Washington State University
 - The Evergreen State College
 - Seattle University

Seattle University

Photos: Seattle University

Joint Base Lewis-McChord

Photo: O2 Compost

Joint Base Lewis-McChord

Fremont Brewing

Washington Companies

Photos: O2 Compost

Green Mountain Technologies

- Earth Cube (50#dy)
- Earth Tub (100#dy)

- Earth Flow (in-vessel)
 Up to 3 tons/dy
- Earth Flow (site-built)
 Up to 10 tons/dy

Photos: Green Mountain

DT Environmental

EnviroDrum

Anaerobic Digesters

Impact Bioenergy

HORSE = **H**igh-solids **O**rganic-waste **R**ecycling **S**ystem with **E**lectricity

Photos: Impact Bioenergy

135#dy to 2.5 tons/dy

WISERG

2. DECISION STEPS

- 1. Information gathering
- 2. Avoided cost threshold
- 3. Processing potential analyses (composting or anaerobic digestion
- 4. Economics/financial analyses
- 5. Next steps plan

Use a scorecard

Analyses	Options (Compost-AD)			
	Minimal	Low	Medium	High
Avoided Cost Threshold				
Materials/Feedstocks				
Siting				
Resources				
Environmental Issues				
End Use/Marketing				
Summary of Analyses Which are viable? Is any preferred?				
Economic-Financial Analyses				
Recommendation and Next Steps				

Information Gathering

- Materials for composting Feedstocks for digestion
- Soil product usage
- Space
- Weather, climate, and other environmental factors
- Labor
- Equipment
- Waste handling
- Capital and operating costs

Information Gathering

- Project goals
- End uses
- Potential value added
- Risk aversion
- Operating history

Why Do This? What are your project goals?

- Avoided costs Save money on waste management costs
- Offset purchases for mulch, soil, or energy
- Provide education or work opportunities
- Reduce environmental footprint
- Community goodwill

Avoided Cost Threshold

- Disposal or hauling cost savings
- Savings from self haul of waste materials
- Recycling cost savings
- Savings from substitution of compost for purchased products
- Potential value of other benefits of using compost in landscaping

Processing Potential

Materials Collections Siting **Resources Environmental** issues End uses

Composting vs Digestion

Composting	Digestion	
Aerobic	Anaerobic	
With Oxygen	Without Oxygen	
Produces Carbon Dioxide	Produces Biogas: Carbon Dioxide + Methane	
	Also known as "Swamp Gas"	

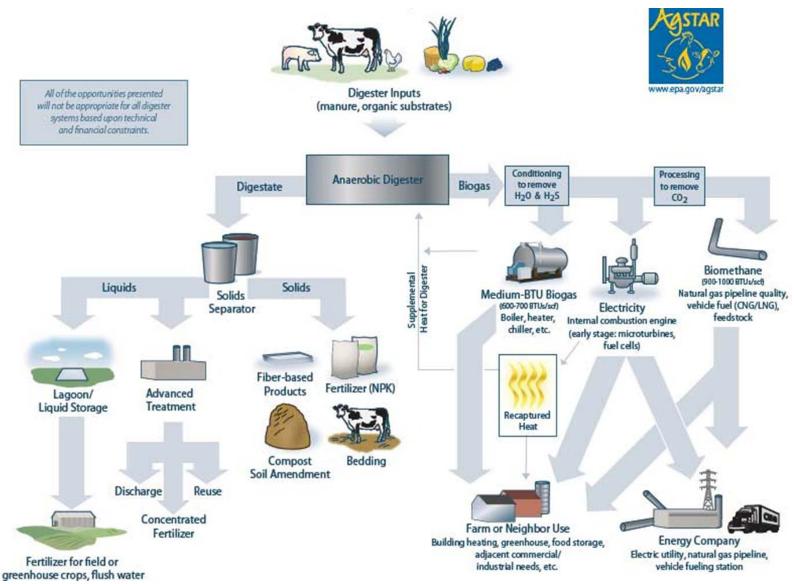
Composting Basics

- Carbon and nitrogen balance
 - Moisture
 - Oxygen
 - Surface area
 - Volume/pile size
 - Temperature and time

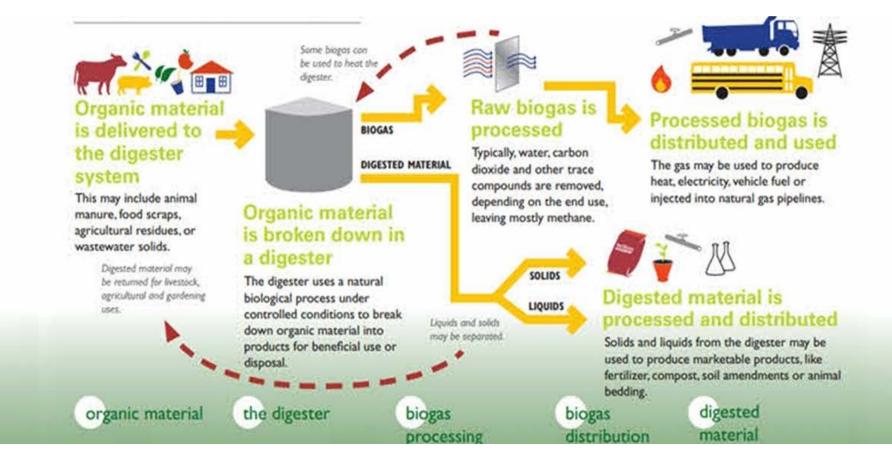
Composting Flow Chart

Composting Technology

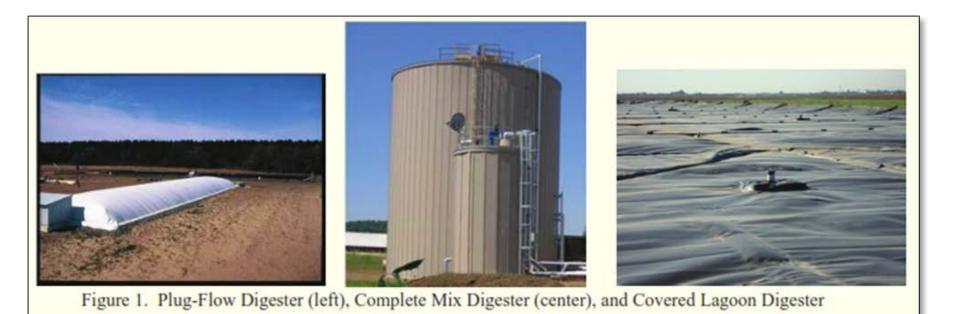
• Low technology


Passive aeration, turned bins, simple vermicomposting

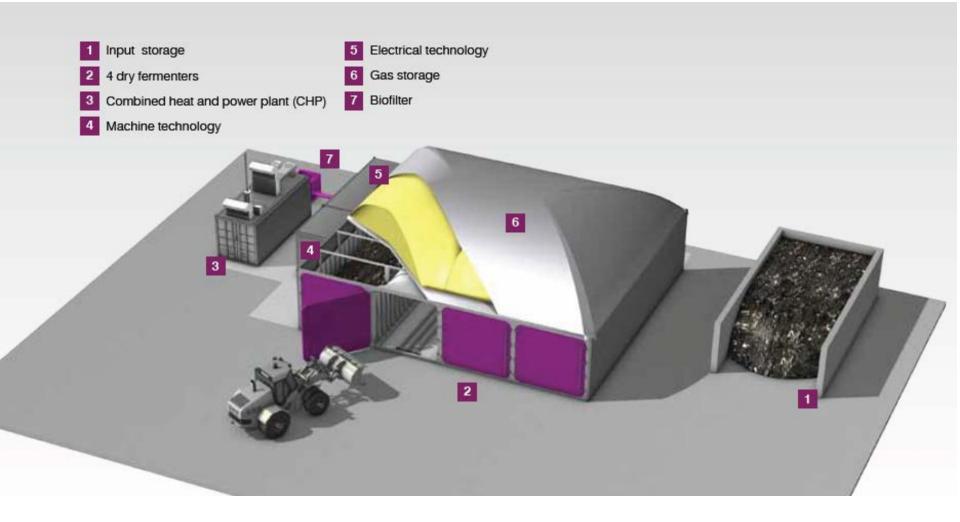
- Medium technology
 - Active aerated static piles or bins, turned piles, rotating drums
- High technology
 - In-vessel or bay-type systems with active aeration and biofilters


Anaerobic Digestion Basics

- Carbon and nitrogen balance
 - Moisture
 - Oxygen-NOT
 - Surface area
 - Volume/digester size
 - Temperature and time

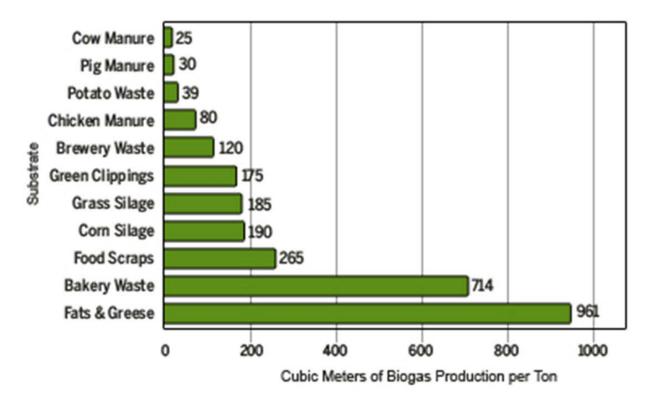

Common Digester Flow

Anaerobic Digestion Flow Chart



Common Manure Digester Systems

Digester systems more commonly associated with manure-based, lower solids projects.


High-Solids AD

Source: Smart Ferm - Kompferm

Biogas Potential

BIOGAS GENERATION POTENTIAL OF SUBSTRATES

Source: Data derived from www.biogas-energy.com, © 2007 Biogas Energy, Inc. Translated from: Basisdaten Biogas Deutschland, Marz 2005,: Fachagentur Nachwachsende Rohstoffs e.V.

Putrescible

"contains organic matter capable of being decomposed by microorganisms and of such a character and proportion as to cause obnoxious odors and to be capable of attracting or providing food for birds or animals."

"Garbage" means putrescible solid wastes (WAC 173-350-100)

Materials/Feedstocks

- Yard and garden debris
- Woody materials
- Food scraps (pre- and post-consumer)
- Paper fiber materials
- Livestock manures
- Fats, oils, and greases (FOG)
- Wastewater biosolids

- Porosity
- Moisture
- Carbon & nitrogen
- Nutrients
- pH
- Visual/sensory qualities

Collections

- Average volumes vs peak volumes
- Seasonality
- Separation ability and efficiency
- Materials balance
- Quality contamination
- Collection cost and labor
- Collection containers, equipment, vehicles

Siting

- Topography, soils, flood zone
- Space: total area available (surface, coverage)
- Access to infrastructure
- Vehicle access
- Neighbors in homes
- Buffer space to environment
- No history of site contamination

Resources/Assets

- Utilities: electrical, water (well), sewer (septic)
- Equipment: loaders, chippers, grinders, shredders, pulpers, conveyors, mixers, manure spreaders, irrigation, etc.
- Human labor vs equipment
- Existing, new or rented equipment
- General vs multipurpose vs specialized
- Management/monitoring (low vs high tech)

Environmental Issues

- State Environmental Policy Act (SEPA)
- Water quality
- Air quality
- Solid waste handling

Start with your local health department or planning department

Environmental Issues

- Planning or zoning approval
- Fire Department, building/construction, road permits
- Local stormwater permits
- Water use permits, especially for wells
- Hydraulics for projects with water channels or culverts
- Surface mine regulations for removal of excavated materials
- Sensitive areas regulations
- Wetlands regulations
- Shoreline protection regulations

Permitting Summary

- Start with the County Planning Dept.
 - Land-disturbing, construction
 - Shoreline permit
 - Flood hazard zone permit
- ORCAA air quality permit for genset
- Ecology solid waste exemption
- WSDA nutrient management planning

End Uses and Project Benefits

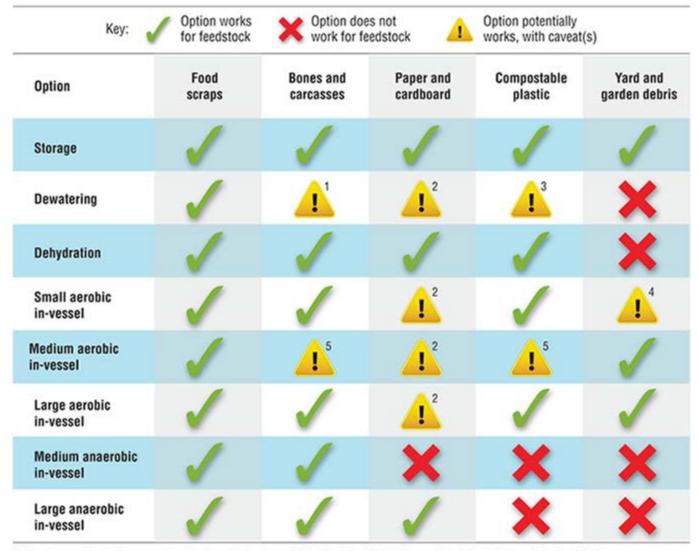
- Energy: heat, electricity, fuel substitutes
- Soil products: mulches and composts
- Nursery/container mixes
- Filter media
- Environmental offsets/credits

Financial Analyses

- Capital expenses (CAPEX)
- Operation & maintenance expenses (OPEX)
- Revenues, cash flow, and earnings
- Simple paybacks
- Net present value
- Return on investment

Tips for Next Steps

- Develop a recommendation
- Use the completed analyses and recommendations as a plan
- Develop a team to support the on-site management plan (at all levels of the organization)
- Consider if a pilot project makes sense before full-scale development
- Institutionalize the project

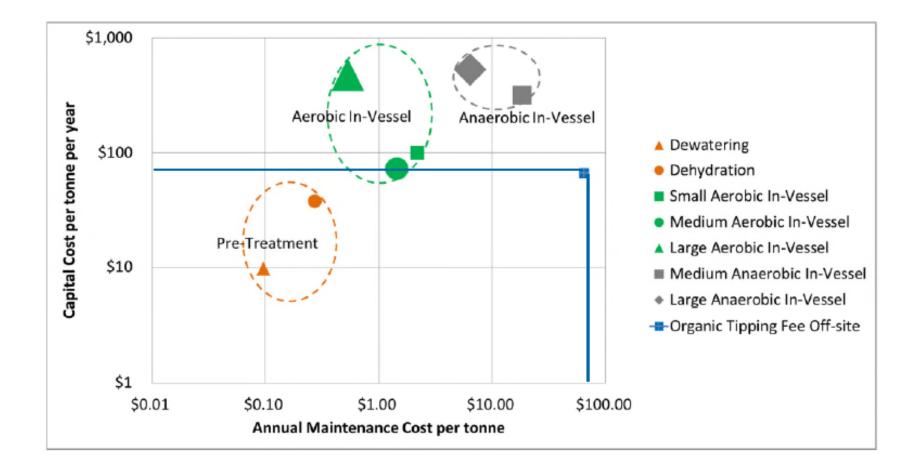

3. RESOURCES

Recent Comparative Studies

eners and fourthear a local rear	
ON-SITE ORGANICS MANAGEMENT OPTIONS REVIEW	

- On-Site Systems for Processing Food Waste, Mass. Dept. Env. Protection
- Small-Scale Organics-to-Energy Vendor Directory, Mass. Clean Energy Center
- On-Site Organics Management Options Review, Metro Vancouver

Figure 1. Type of organic material and on-site management options


1. May jam mechanical components of system. 2. Maximum 10% of feedstock. 3. Maximum 5% of feedstock must be shredded.

4. Maximum 20% of feedstock. 5. Acceptable, but may not degrade completely.

Comparing Composting & AD

Option	W eekly Capacity	Capital Cost	Annual Maintenance Cost	Footprint	Materials Accepted	Time commitment	Corporate Sustainability Benefit	Odour control	Output Material	Maintenance	Capital	Process Time	Installation Requirements	Capacity	Ele ctricity Requirements																														
Conventional Storage	Depends on hauling	Up to \$1,000	Minimal	•		•	0	0	0	•	•	•	•	0	•																														
Specialized Storage	Depends on hauling	\$4,000-6,000	Minimal	•	٠	•	0	Ο	0	•	•	•	•	0	\bullet																														
Dewatering	Up to 400,000 kg/week	\$25,000	\$250	•	\bullet	•	O	٢	٩	•		•	•	•	۲																														
Dehydration	Up to 14,000 kg/week	\$27,000-50,000	\$200	•	•	•	0	\bullet	•	•	\bullet	•	\bullet	•	0																														
Small Aerobic In-Vessel	150 -3,500 kg/week	\$18,000	\$400	•			•			0	•		•	O	•																														
Medium Aerobic In-Vessel	700 -8,000 kg/week	\$30,000+	\$600	0	0	0	•	•	•	0	0	Ο	•	0	0																														
Large Aerobic In-Vessel	2,000-18,000 kg/week	\$450,000	\$500	\bullet	•	0	•	•	•	0	\bullet	0	•		•																														
Medium Anaerobic In-Vessel	5000 - 20,000 kg/week	\$240,000+	\$14,000	0	0	0		\bullet	•	0	0	0	0	•	\bullet																														
Large Anaerobic In-Vessel	20,000 kg/week	\$825,000+	\$10,000	0	\bullet	0		•	•	0	0	0	0	•																															
					con core		O Mediocre		~		~		~		~		~		~		~				~		~		~		~		~		~		~		● Fair		0 0 00d	<u> </u>) tter	B) est

Comparing Costs

Support Organizations

- Washington Organic Recycling Council (WORC)
- American Biogas Council (ABC)
- EPA AgSTAR
- Dept of Ecology, Organic Materials Management
- BioCycle magazine

Facility Operator Training

- Washington Organic Recycling Council (WORC)
- Monday, October 17 to Friday, October 21, 2016

Photo: Dept of Ecology

WSU Puyallup Research and Extension Center 2606 W Pioneer Ave, Puyallup WA, 98371 info@compostwashington.org

Videos

- DT Environmental Cedar Creek Corrections
- Green Mountain Technology Bainbridge High School (2010)
- Impact Bioenergy introduction
- <u>O2 Compost Aerated Composting Webinar</u>
- WISERG introduction for grocery stores