The Future of AI David Cox Director, MIT-IBM Watson AI Lab MIT-IBM Watson AI Lab

"Artificial Intelligence"

General Al Revolutionary

Broad Al Disruptive and Pervasive

Narrow Al Emerging

Narrow Al

Single task, single domain Superhuman accuracy and speed for certain tasks

Broad Al

Multi-task, multi-domain

Multi-modal

Distributed AI

Explainable

General Al

Cross-domain learning and reasoning Broad autonomy

Narrow Al

Single task, single domain Superhuman accuracy and speed for certain tasks

Broad Al

Multi-task, multi-domain

Multi-modal

Distributed AI

Explainable

General Al

Cross-domain learning and reasoning Broad autonomy

Narrow Al

Single task, single domain Superhuman accuracy and speed for certain tasks

Broad Al

Multi-task, multi-domain

Multi-modal

Distributed AI

Explainable

General Al

Cross-domain learning and reasoning Broad autonomy

Forbes / Tech

DEC 29, 2014 @ 11:37 AM

115,776 ூ

Sell In May & Walk Away: 6 Stocks to Dump

Tech 2015: Deep Learning And Machine Intelligence Will Eat The World

Anthony Wing Kosner, CONTRIBUTOR

Quantum of Content and innovations in user experience FULL BIO >

Opinions expressed by Forbes Contributors are their own.

man in black shirt is playing guitar.

construction worker in orange safety vest is working on road.

Brock et al. 2018

Gatys et al. 2015

"Teddy Bear"

Meret Oppenheim, Le Déjeuner en fourrure

Wang et al. 2018

man in black shirt is playing guitar.

construction worker in orange safety vest is working on road.

a man riding a motorcycle on a beach

What's this?

Home

Communities

Conferences.

Europe

Forums

Vendor Connect

More

Sign In

- 100's of CME courses to choose from
- Sort by modality or anatomical region.
- \$15/CME credit hour

BROWSE COURSES NOW

RADIOLOGY NEWS

CCTA usage rate rises sharply, but still eclipsed by MPI

February 23, 2018 -- The use of coronary CT angiography (CCTA) to evaluate chest pain in the emergency department has grown exponentially, but clinicians are still using myocardial perfusion imaging (MPI) far more frequently,

according to research published online February 15 in the American Journal of Roentgenology,
Discuss

HOVERT ISEMENT +

fMRI, machine learning could predict OCD therapy outcomes

February 23, 2018 -- By analyzing resting-state functional MRI (fMRI) brain scans with a machine-learning algorithm, researchers at the University of California, Los Angeles may have devised a way to predict treatment outcomes for

people with obsessive-compulsive disorder (OCD), according to results

ACR Career Center

Connect With Top **Employers**

Find Your Perfect Fit

CASE OF THE DAY(SM)

51-year-old woman with incidental finding View case | Discuss

Recent Cases

15-year-old girl with persistent cough

83-year-old

Original Top-3 inferred captions:

- A red stop sign sitting on the side of a road.
- A stop sign on the corner of a street.
- A red stop sign sitting on the side of a street.

Adversarial Top-3 captions:

- A brown teddy bear laying on top of a bed.
- A brown teddy bear sitting on top of a bed.
- A large brown teddy bear laying on top of a bed.

The path to Broad AI

Explainability

Security

Ethics

Learn more from small data

Infrastructure

INDUSTRY

ACADEMIA

AI AI

INDUSTRY

ACADEMIA

INDUSTRY PROBLEMS

LIFE SCIENCES

CHEMISTRY

BIOLOGY

DATA

ΑI

Al

ECONOMICS

RESOURCES

PHYSICS

PHYSICS

By the numbers....

\$240m investment

Roughly 100 full-time equivalent researchers (60 MIT / 40 IBM), working on 50 projects

10 year time horizon

What's coming in the next few years in AI?

The path to Broad AI

- 1. Extend
- 2. Understand
- 3. Accelerate

Understand

Explainability

Security

Ethics

Learn more from small data

Infrastructure

Errors in Artificial Neural Networks

Debugging neural networks enables trust and transparency

Stefanie Jegelka MIT

Hendrik Strobelt **IBM**

AI: Washing dishes Truth: Brushing teeth

neuron 867: Kitchen

neuron 1749: House

neuron 795: Bathroom

neuron 1978:

Network confused about the scene and did not detect the brush.

die längsten reisen fangen an , wenn es auf den straßen dunkel wird .

Sasha Rush Harvard

http://seq2seq-vis.io/

Extend

Explainability

Security

Ethics

Learn more from small data

Infrastructure

Methods for Exploiting Unlabeled Data in **Supervised Learning**

Doing more with less annotation

MIT

What's coming in the next 3-5 years?

How many blocks are on the right of the three-level tower?

Will the block tower fall if the top block is removed?

What is the shape of the object closest to the large cylinder?

Are there more trees than animals?

Neuro-symbolic Program Induction

Inferring generative neural programs from data to enable reasoning on complex data and enhance explainability of AI

Josh Tenenbaum MIT

Michael Witbrock IBM

Top row: hand drawn figures bottom row: outputs of inferred generative programs

Inferring text transformation programs from examples, to clean and standardize data, reason about complicated structured text, enhance explainability

IBM

Chuang Gan Josh Tenenbaum MIT

Methods	Count	Exist	Compare Number	Compare Attribute	Query Attribute	Overall
Humans [Johnson et al., 2017b]	86.7	96.6	86.4	96.0	95.0	92.6
CNN+LSTM+SA+MLP [Johnson et al., 2017b]	59.7	77.9	75.1	70.8	80.9	73.2
N2NMN* [Hu et al., 2017]	68.5	85.7	84.9	88.7	90.0	83.7
Dependency Tree [Cao et al., 2018]	81.4	94.2	81.6	97.1	90.5	89.3
CNN+LSTM+RN [Santoro et al., 2017]	90.1	97.8	93.6	97.1	97.9	95.5
IEP* [Johnson et al., 2017b]	92.7	97.1	98.7	98.9	98.1	96.9
CNN+GRU+CBN [Perez et al., 2018]	94.5	99.2	93.8	99.0	99.2	97.6
DDRprog* [Suarez et al., 2018]	96.5	98.8	98.4	99.0	99.1	98.3
MAC [Hudson and Manning, 2018]	97.1	99.5	99.1	99.5	99.5	98.9
TbD+reg+hres* [Mascharka et al., 2018]	97.6	99.2	99.4	99.6	99.5	99.1
Ours (100 programs)	54.0	81.0	50.2	59.5	75.4	66.0
Ours (200 programs)	84.6	91.3	72.9	85.9	88.7	86.1
Ours (500 programs)	99.7	99.9	99.9	99.8	99.8	99.8

Table 1: Our model outperforms current state-of-the-art methods on CLEVR and achieves near-perfect question answering accuracy. (*): training relies on all program annotations (700k).

Effectively perfect!

Causal Inference

Beyond Correlation—inferring and testing for causal relationships in complex systems

Guy Bresler MIT

Karthikeyan Shanmugam IBM

http://tylervigen.com/spurious-correlations

Causal Inference

Beyond Correlation—inferring and testing for causal relationships in complex systems

Karthikeyan Shanmugam

Causal Inference

Beyond Correlation—inferring and testing for causal relationships in complex systems

Caroline Uhler MIT

Guy Bresler MIT

Karthikeyan Shanmugam IRM

http://tylervigen.com/spurious-correlations

Using AI to Accelerate Protein **Design and Discovery**

One third of global food production goes to waste because of spoilage. Can we use AI to design proteins to prevent that?

MILT

IBM

Lingfei Wu IBM

Benedetto Marelli

Markus Buehler MIT

Protein Synthesis

Letter (building block)

Word (letter sequence with distinct meaning)

Protein (distinct sequence of amino acid providing specific structure and function)

Paragraph (distinct section of a document dealing with a specific topic)

70 µm

Protein2Drug: Generative AI for Drug Design

How can we use powerful new generative neural network techniques to generate drugs tailored to targeting specific binding pockets

Payel Das IBM

Rafael Gomez-Bombarelli MIT

Generative Model for Ligands

$$f_1 \qquad f_2 \qquad f_3$$

The path to Broad AI

Explainability

Security

Ethics

Learn more from small data

Infrastructure

