Prospective Evaluation of the

ResistancePlus™ MG:

Simultaneous Detection of *Mycoplasma genitalium* (MG) and Azithromycin Resistance Mutations

Litty Tan, PhD Director of R&D

Investigators

Royal Women's Hospital (RWH), Melbourne, Australia

- Sepehr Tabrizi
- Jimmy Twin
- Jenny Su
- Marin Poljak
- Suzanne Garland

Melbourne Sexual Health Centre (MSHC), Australia

- Catriona Bradshaw
- Christopher Fairley

SpeeDx

- Samantha Walker
- Elisa Mokany

Disclosure

SpeeDx is the developer and manufacturer of the *ResistancePlus*[™] assay evaluated in this study

Mycoplasma genitalium (MG) clinical association

General population

- 8 Detected in 1-3.3%
- Exact burden of disease is unknown

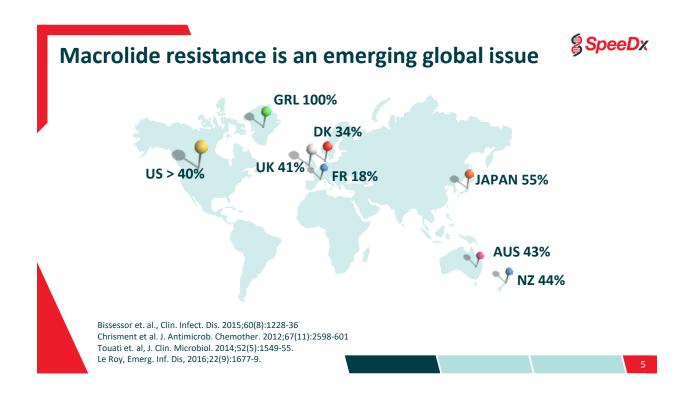
Men

- Strongly associated with non-gonococcal urethritis (NGU) (6-50%)
- 8 Other conditions: Proctitis, Balanitis, Chronic prostatitis, Acute epididymitis

Women

- Strongly associated with cervicitis (5-20%)
- [§] Other conditions: Endometritis, Pelvic inflammatory disease, Preterm birth

Clinical management of MG


Empiric treatment of NGU & cervicitis

- **Doxycycline:** poor efficacy, microbiological cure rate of MG is 30-40%
- **Azithromycin:** higher efficacy, 1 g single dose has 85% cure rate

Decreasing overall cure rates with azithromycin due to MG resistance

Where 1 g azithromycin is used to treat NGU, macrolide resistance is ~30-40%

Macrolide resistance in MG

Azithromycin resistance is associated with mutations in 23S rRNA gene

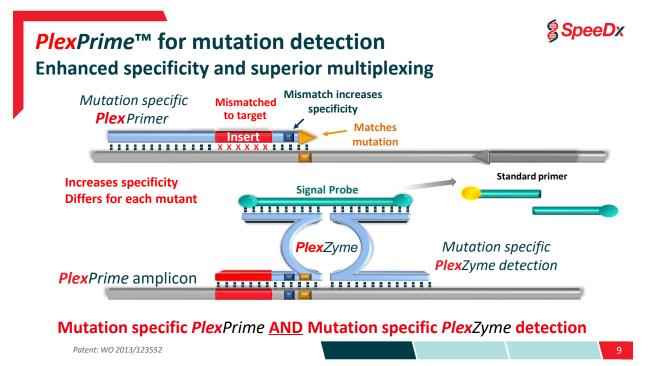
- Prevent azithromycin binding and inhibiting translation
- \$ A2058G, A2059G, A2058T, A2058C, A2059C (*E. coli* numbering)
 - **§** Confer high MICs or treatment failure
- 82% of treatment failures showed presence these mutations prior to treatment
 - \$ 18% showed a mutation post-treatment

§ SpeeDx

MG testing

MG detection

In house qPCR tests and recent commercially available CE marked tests


Macrolide resistance detection (23S rRNA mutation)

- 8 Methods for mutation detection
 - 8 Sequencing Costly and generally not convenient for routine diagnostics
 - High resolution melt analysis (HRMA) Separate assay to MG detection, not easy to analyse
 - 8 Fluorescence resonance energy transfer (FRET) Lacking in sensitivity

- Ø Detects MG
- Ø Detects 5 of the most common 23S rRNA macrolide resistance mutations

ResistancePlus™ MG Sensitivity and specificity

	Target		
Channel 1	MG detection (MgPa)		
Channel 2		A2058G	
	23S rRNA mutation	A2059G	
		A2058T	
		A2058C	
		A2059C	
Channel 3	Internal Control		

SpeeDx

5

ResistancePlus™ MG Sensitivity and specificity

	Target		Sensitivity (copies/reaction)		
Channel 1	MG detection (MgPa)		10		
Channel 2		A2058G	12		
		A2059G	10		
	23S rRNA mutation	A2058T	10		
	mutation	A2058C	10		
		A2059C	15		
Channel 3	Internal	Internal Control			
		Specific against other targets			
Targets	T. vaginalis, S	M. hominis, U. parvum, U. urealyticum, C. trachomatis, N. gonorrhoeae, T. vaginalis, S. pneumoniae, M. pneumoniae, M. gallisepticum, E. coli, E. faecalis, P. aeruginosa, K. pneumoniae, HSV-1, HSV-2			

- **§** 1089 samples received Nov 2015-Dec 2015 at RWH (Melbourne, Australia)
 - Royal Women's Hospital, Melbourne Sexual Health Centre, and external sites
 - Symptomatic and asymptomatic males and females

	Urine/ urethral swab	Anal swab	Cervical/ vaginal swab	Sample numbers
Male	354	34	n/a	388
Female	203	2	496	701
Total	557	36	496	1089

§ SpeeDx

SpeeDx

Prospective study: *ResistancePlus*[™] MG *M. genitalium* detection

		In house qPCR (16S rRNA)			%	95% CI	
		+	-	Total	Sensitivity	98.5	91.7 to 99.9
Ă	+	64	0	64	Specificity	100.0	99.6 to 100.0
SpeeDx	-	1	1024	1025	PPV	100.0	94.4 to 100.0
Sp	Total	65	1024	1089	NPV	99.9	99.5 to 100.0

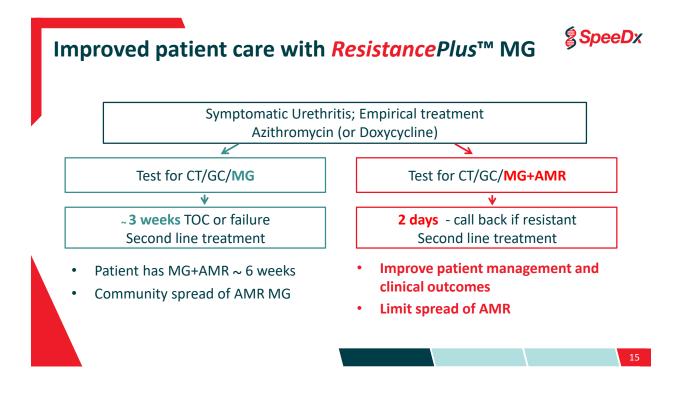
§ MG prevalence = 6.0%

- Male 10.8% (42/388)
- Female 3.3% (23/701)

Prospective study: *ResistancePlus*[™] MG 23S rRNA mutant detection

		Sanger Sequencing			%	95% CI	
		Mutant	Wild type	Total	Sensitivity	100.0	90.8 to 100.0
Ă	Mutant	38	1	39	Specificity	96.2	80.4 to 99.9
SpeeDx	Wild type	0	25	25	PPV	97.4	86.5 to 99.9
Sp	Total	38	26	64*	NPV	100.0	86.3 to 100.0

* Only includes MG positive samples by both methods


§ MG 23S rRNA mutant prevalence = 63.1%

- Male 81.0% (34/42)
- Female 30.4% (7/23)

Highly multiplexed test with excellent clinical sensitivity and specificity

Submitted for TGA Approval

14

ResistancePlus[™] assays in development

- 8 MG fluoroquinolone resistance
- § Gonorrhoea macrolide resistance

MG and emerging resistance

Fluoroquinolones

- 8 Moxifloxacin often used as second line treatment
 - 12% treatment failure in Australia
- 8 Resistance linked to clustered mutations in parC
 - High levels of resistance linked to a G248T mutation
 - Other parC mutations in the literature include A247C, G259A/C/T

ResistancePlus™ MG – Fluoroquinolone resistance SpeeDx Preliminary clinical testing

	Target		
Channel 1	MG detection (MgPa)		
Channel 2	parC mutation	G248T	
Channel 3	parC mutations	G247C	
		G259A	
		G259T	
		G259C	
Channel 4	Internal Control		

MG detection: 100% sensitivity (18/18) MG parC mutations: 91% sensitivity (10/11) & 100% specificity (7/7)

§ SpeeDx

For further queries:

Litty Tan, PhD Director of Research and Development littyt@speedx.com.au

Please come and visit our Booth!