

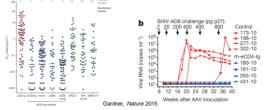

### **HIV Tropism**

HIV uses CD4 and a co-receptor to enter cells
HIV is grouped depending the the co-receptor usage



### HIV and CCR5

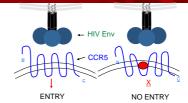



### Inhibition of R5 HIV

- Individuals homozygous for  $\Delta 32$  CCR5 do not express CCR5
- Resistant to HIV infection
- Otherwise mostly healthy
- 'Berlin patient' stem cell transplant from a  $\Delta 32$  CCR5 homozygous donor
- Natural ligands of CCR5 MIP-1, MIP-1, and RANTES block HIV infection
- RANTES derivatives (AOP, PSC and 5P12-RANTES) with greater potency explored for use as topical microbicides
- Gene editing of CCR5 with Zinc Finger nucleases can protect CD4+ T cells from infection

### eCD4-lg, a one-two punch

Env

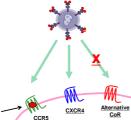

- Combination of CD4 domain and CCR5 N-terminus mimetic
  - Greater breadth and potency then bNAB Protective in rhesus macaques against
- SHIV challenge



### CCR5 antagonists

- Small molecule inhibitors of CCR5
- Block binding of CCR5 ligands and HIV Env
- . Maraviroc (MVC) - approved for use
- Cenicriviroc (CVC) phase 2b complete .
- Vicriviroc (VCV) terminated
- Aplaviroc (APL) terminated
- TAK-779, TAK-220, AD101 preclinical .
- As these compounds only block R5 HIV, a tropism test is required prior to initiation of therapy with CCR5 antagonists

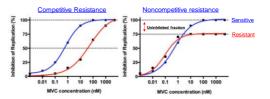
#### How Maraviroc Works






### confirmation not recognised by HIV

### HIV becomes resistant to Maraviroc


- In vitro continued use of CCR5 In vivo - Either through switching to CXCR4 usage or continual use of
- CCR5 Continued use of CCR5 - mutations in Env allows the resistant virus to bind to the antagonist modified form
- of CCR5 X4 is unlikely to be true 'switch' rather emergence of minority CXCR4 using



CCR5

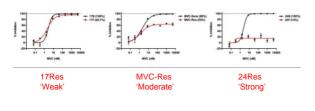
### Resistance manifests in a unique way

- Represented by changes in the maximal percent inhibition (MPI) . rather then changes in  $IC_{50}$  MPI is a marker for resistance
- Non-competitive mechanism of resistance
- . Resistant strains can use MVC-occupied and free CCR5



#### Questions to answer

MVC


- What determines the MPI?
- How do MVC-resistant viruses recognise and bind to the MVCoccupied receptor?
  - What are the consequences of MVC-resistance? Specifically: Are MVC-resistant viruses cross resistant to other entry
    - inhibitors?
    - Do MVC-resistant viruses have changes in their tropism for CD4+ cells?
- · Can we predict resistance did MVC-resistant viruses have some intrinsic resistance prior to therapy?
- Can we inhibit MVC-resistant viruses?

### Clones used in this study

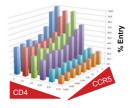
| Env      | MVC resistance | Description                             |  |  |  |
|----------|----------------|-----------------------------------------|--|--|--|
| MVC-Sens | -              | Generated from CC1/85 isolate in an in  |  |  |  |
| MVC-Res  | +              | vitro cell culture passaging experiment |  |  |  |
| 17Sens   | -              | Pre-treatment and post failure samples  |  |  |  |
| 17Res    | +              | from two patients enrolled in MVC       |  |  |  |
| 24Sens   | -              |                                         |  |  |  |
| 24Res    | +              |                                         |  |  |  |

### MVC Sensitivity varies amongst resistant strains

- Reductions in MPI for resistant Envs
- MPIs vary amongst strains

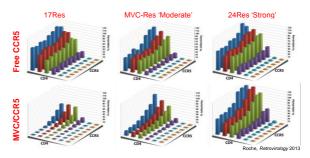


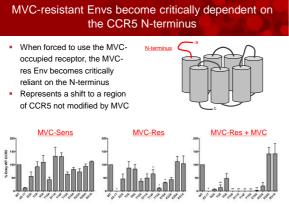
Roche, Retrovirology 2013


#### V3 loop changes confer resistance but are not common

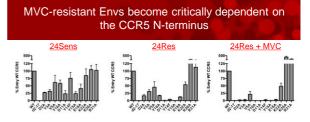
- Mutagenesis studies have mapped the resistance mutations to the variable loop 3 (V3) of gp120
- Resistance mutations are not common amongst resistant Envs and are context dependent

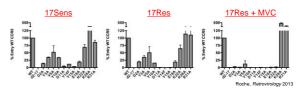
|          | V3 Sequence                          |  |  |  |  |  |  |  |
|----------|--------------------------------------|--|--|--|--|--|--|--|
|          | 10 20 30                             |  |  |  |  |  |  |  |
|          |                                      |  |  |  |  |  |  |  |
| MVC-Sens | CTRPNNNTRKSIHIG PGRAFYATGDIIGDIRQAHC |  |  |  |  |  |  |  |
| MVC-Res  | TV                                   |  |  |  |  |  |  |  |
| 17Sens   | CTRPGNNTRKSIHMG PGSSIYATGAIIGDIRQAHC |  |  |  |  |  |  |  |
| 17Res    | F DV                                 |  |  |  |  |  |  |  |
| 24Sens   | CTRPNNNTRKSIPIG-PGRAFYATGDIIGDIRQAHC |  |  |  |  |  |  |  |
| 24Res    | S A                                  |  |  |  |  |  |  |  |


### What determines the MPI?


- . Changes in receptor affinity investigated using 293-Affinofile affinity profiling system CD4 and CCR5 expression is controlled by separate inducible
- promoters 48 cell populations with varying CD4/CCR5 levels are created



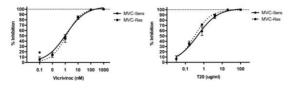

### Affinity for the MVC-CCR5 complex determines the MPI


Only strongly resistant 24Res is unaffected by changes in CCR5 expression in the presence of MVC





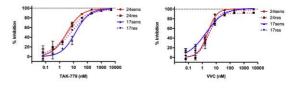
Roche, J Virol 2011



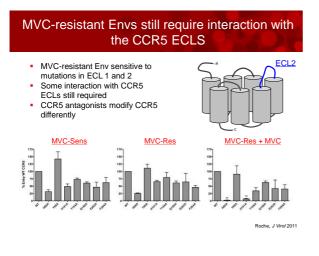


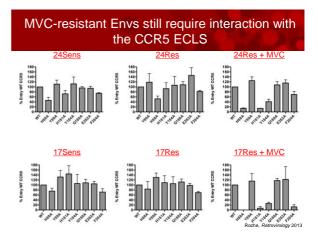

# Does MVC resistance lead to cross resistance?

- For moderately resistant MVC-Res

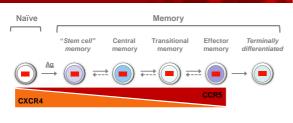

   No reduction in MPI to VCV
  - No increase in T-20  $\mathrm{IC}_{\mathrm{50}}$




Roche, J Virol 2011


# Does MVC resistance lead to cross resistance?

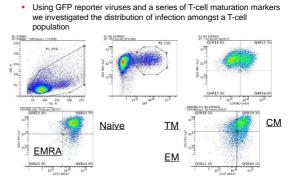
- Both weakly and strongly MVC resistant Envs retain sensitivity to TAK-779
  - Strongly MVC resistant Env displays weak cross-resistance to VCV
- Cross resistance does not appear to occur with MVC resistance




Roche, Retrovirology 2013

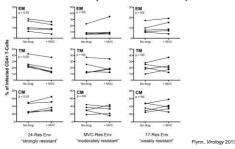





### Do changes in the engagement and affinity for CCR5 alter tropism?

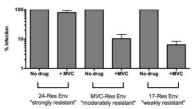


- Coreceptor expression varies amongst CD4+ T cell subsets
- Do changes in CCR5 affinity change infection of different subsets?


Bleul et al. PNAS 1997, Lee et al. PNAS 1999, Gorry et al. Curr HIV/AIDS rep 2011

### Do MVC-resistant Envs have altered Tcell tropism?

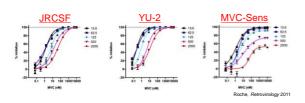



### MVC resistant Envs have alterations in T-cell tropism

 In the presence of MVC, strongly resistant 24-Res Env has a shift in Tcell tropism towards increased infection of central memory cells and reduced infection of effector memory and transitional memory cells



### MVC-resistant Envs have attenuated M-tropism


- Matched MVC-sensitive and MVC-resistant Envs display similar levels of Macrophage entry
- The presence of MVC attenuates or abolishes entry by moderately or weakly MVC-resistant Envs
- An altered interaction with CCR5 appears important for Macrophage tropism



Flynn, Virology 2013

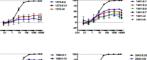
## Are some viruses pre-triggered to escape MVC?

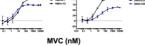
- The CC1/85 isolate is unique in its ability to evolve CCR5 antagonist resistance in vitro relatively easily
- The MVC-sens Env is sensitive to MVC in most assays
- When the CCR5 levels are increased a partial level of resistance is observed
- Perhaps this explains why this isolate can evolve resistance
   Can this be used to prescreen patients before commencement of MVC therapy?



### Baseline MVC-resistance in a therapy naïve subtype C cohort

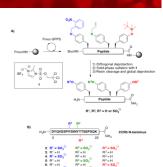
- MVC sensitivity assessed in a panel of Envs from a subtype C cohort of individuals with progressive disease
- Residual viral entry in the presence of MVC in 16/244 Envs (8 patients)
- No genetic correlates


|                               |                | :   | * | ŀ       | ; | ÷ |             | ~~ | ÷        |
|-------------------------------|----------------|-----|---|---------|---|---|-------------|----|----------|
| WE DESIGN (MINING AN ADDRESS) | 148<br>1<br>1  | ÷   |   | 1       |   |   | -           | ÷  | 2        |
|                               | 7"             | Ŷ   | 7 | 7"      | ÷ | j | 1.          |    | ;        |
|                               |                | \$  | * | 1.      |   | ÷ | <u> </u>    | `  | *        |
|                               | 7              | .3. |   | 108     |   |   | -<br>-<br>- |    |          |
|                               | -              |     | ÷ | 1       | - |   |             | ;  | ;        |
|                               | 1              |     | ł | 2 · ·   | ĩ | ÷ | 2           | ;  | ÷        |
|                               | 71554          |     | Ť | 1       |   |   | 11000       | 1  | <i>,</i> |
|                               | 10<br>10<br>10 |     | ÷ |         | ; |   |             | ÷  |          |
|                               | -              |     | ~ | 1242    | ÷ |   | 220         | :  |          |
|                               | 125            | +   | ÷ | <u></u> | Ŷ | ÷ | 125         | ÷  | ÷        |


### Baseline MVC-resistance in a therapy naïve clade C cohort

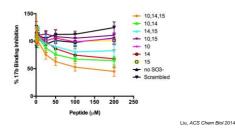
73-84-23--25-

- Varying MPIs observed for selected clade C Envs when infecting CCR5<sup>high</sup> cells
- Are these Envs more likely to evolve genuine resistance to MVC?
- Implications for MVC as a microbicide or PrEP



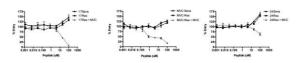






### Inhibiting the MVC-resistant viruses

- Increased dependence on CCR5 N-terminus appears to be a hallmark of MVCresistant strains
- Can we inhibit this interaction?
- Peptide representing aa 2-22
- of the CCR5 N-terminus
  Chemical sulfation of tyrosine
- residues at position 10, 14 and 15




### Sulfation at three residues critical for peptide binding to gp120

- Single sulfated variants display little binding to souble gp120
- Sulfation required at tyrosine 10, 14 and 15 for maximal peptide binding to gp120



#### Sulfated mimetic of CCR5 N-terminus inhibits MVC-resistant strains

- Sulfated CCR5 N-terminus mimetic displays minimal activity in . the absence of MVC
- . In the presence of MVC, peptide is capable of inhibiting entry of all MVC-resistant strains tested



### Conclusions

- MVC-resistant strains escape MVC by binding to CCR5 N-terminus - common to all resistant Envs studied to date
- · A sulfated peptide mimic of the CCR5 N-terminus can block this interaction
- MVC-resistant Envs display little or no cross-resistance to other CCR5 antagonists
- · Efficient MVC/CCR5 use by resistant strains can lead to increased infection in CD4+ central memory T cells
- · Weak MVC/CCR5 use by resistant strains can lead to attenuation of macrophage infectivity
- Baseline resistance to MVC can be detected when using CCR5<sup>high</sup> cells - can we predict the capacity of virus to evolve resistance?

### Acknowledgments

### Pfizer/ViiV

Lachlan Gray Hamid Salimi Jacqueline Flynn Renee White Katharina Borm

Andy Poumbourious

#### Peter Doherty Institute Sharon Lewin

Burnet Institute

Melissa Churchill

Paul Gorry

Mike Westby Becky Jubb

<u>University of</u> <u>Melbourne</u> Damian Purcell

University of Sydney Richard Payne Johnny Lui

al Health and Research Council Medical R



**Burnet Institute** 

