Standardized, Quality Assured Time-Kill Curve Analysis and Pharmacodynamic Functions of Different Antibiotics for \textit{in-vitro} Evaluation of Treatment Regimens for \textit{Neisseria gonorrhoeae}

Sunniva Förster1,2,3, Magnus Unemo3, Lucy Hathaway2, Nicola Low1, Christian Althaus1

1Institute of Social and Preventive Medicine (ISPM), Switzerland
2Institute for Infectious Diseases (IFIK), University of Bern, Switzerland
3WHO Collaborating Centre for Gonorrhoea and other STIs, Örebro University, Sweden

15. September 2015
Time-kill curves for *Neisseria gonorrhoeae*

Challenges:
- Fastidious bacteria difficult to grow standardized in liquid broth
- Synchronized growth phase for all strains needed
- Interpretation requires expert knowledge
- Normally very low throughput (colony counting!)
Pharmacodynamic analysis of *in-vitro* time-kill data

Estimating pharmacodynamic parameters from time-kill data (Regoes et al., 2004):

- ψ_{max}: maximal growth in absence of antimicrobial
- κ: slope of Hill function
- ψ_{min}: minimal net growth at high concentrations
- zMIC: concentration that results in zero growth
Pharmacodynamic analysis of *in-vitro* time-kill data

Estimating pharmacodynamic parameters from time-kill data (Regoes et al., 2004):

- ψ_{max}: maximal growth in absence of antimicrobial
- κ: slope of Hill function
- ψ_{min}: minimal net growth at high concentrations
- $z\text{MIC}$: concentration that results in zero growth
Pharmacodynamic analysis of *in-vitro* time-kill data

Estimating pharmacodynamic parameters from time-kill data (Regoes et al., 2004):

- ψ_{max}: maximal growth in absence of antimicrobial
- κ: slope of Hill function
- ψ_{min}: minimal net growth at high concentrations
- zMIC: concentration that results in zero growth
Pharmacodynamic analysis of *in-vitro* time-kill data

Estimating pharmacodynamic parameters from time-kill data (Regoes et al., 2004):

- ψ_{max}: maximal growth in absence of antimicrobial
- κ: slope of Hill function
- ψ_{min}: minimal net growth at high concentrations
- zMIC: concentration that results in zero growth
Pharmacodynamic analysis of *in-vitro* time-kill data

Estimating pharmacodynamic parameters from time-kill data (Regoes et al., 2004):

- ψ_{max}: maximal growth in absence of antimicrobial
- κ: slope of Hill function
- ψ_{min}: minimal net growth at high concentrations
- zMIC: concentration that results in zero growth
Workflow of the novel time-kill assay

1. **Bacterial growth rate** vs. ciprofloxacin concentration (ng/mL)
2. **Bacterial counts** over time (hours)
3. **Image** of bacteria on agar plate
4. **Image** of ciprofloxacin molecule
5. **Image** of bacterial culture in broth
6. **Clock** indicating time progression
Workflow of the novel time-kill assay
Workflow of the novel time-kill assay

1. Bacterial growth rate [h⁻¹]
2. Ciprofloxacin concentration [μg/L]
3. Time [h]
4. Bacteria [CFU/mL]
5. Clock

Sunniva Förster
Development of the novel time-kill assay
Workflow of the novel time-kill assay
Workflow of the novel time-kill assay

Development of the novel time-kill assay
Workflow of the novel time-kill assay
Workflow of the novel time-kill assay
Workflow of the novel time-kill assay

Development of the novel time-kill assay
Time-kill curves in a susceptible strain (DOGK18)

- **Ciprofloxacin**
- **Ceftriaxone**
- **Tetracycline**

Time-kill assay has improved throughput and distinguishes different antimicrobials.

Sunniva Förster
Development of the novel time-kill assay

Conc. [xMIC]
Time-kill curves in a susceptible strain (DOGK18)

Time-kill assay has improved throughput and distinguishes different antimicrobials
Pharmacodynamic functions for different antimicrobials in DOGK18

- Ciprofloxacin
- Gentamicin
- Spectinomycin
- Benzylpenicillin
- Ceftriaxone
- Cefixime
- Azithromycin
- Chloramphenicol
- Tetracycline
Pharmacodynamic functions for different antimicrobials in DOGK18

Pharmacodynamic functions quantify the results from rapidly bactericidal to bacteriostatic
Application of the novel assay

Genetic resistance determinants, in vitro time-kill curve analysis and pharmacodynamic functions for the novel topoisomerase II inhibitor ETX0914 (AZD0914) in Neisseria gonorrhoeae

Sunniva Förster, Daniel Golparian, Susanne Jacobsson, Lucy Hathaway, Nicola Low, William Shafer, Christian Althaus and Magnus Unemo
Comparison of mutants resistant to ETX0914

Susceptible strain (WHO O)

Isogenic gyrB mutant (OM-5)

Förster et. al. 2015, submitted
Pharmacodynamic comparison of ETX0914 and ciprofloxacin

ETX0914 concentration [mg/L] vs. Bacterial growth rate [h⁻¹]

Ciprofloxacin concentration [mg/L] vs. Bacterial growth rate [h⁻¹]
Conclusions

The time-kill assay works across susceptible strains, resistant mutants and antimicrobial classes. Pharmacodynamic functions can be used to quantify time-kill data. Evaluation of drug candidates (ETX0914) and mutants (gyrB) is possible. Estimated parameters can be used for pharmacodynamic modelling.
Conclusions

- The time-kill assay works across susceptible strains, resistant mutants and antimicrobial classes.
Conclusions

- The time-kill assay works across susceptible strains, resistant mutants and antimicrobial classes.

- Pharmacodynamic functions can be used to quantify time-kill data.
Conclusions

- The time-kill assay works across susceptible strains, resistant mutants and antimicrobial classes
- Pharmacodynamic functions can be used to quantify time-kill data
- Evaluation of drug candidates (ETX0914) and mutants (gyrB)
Conclusions

- The time-kill assay works across susceptible strains, resistant mutants and antimicrobial classes.
- Pharmacodynamic functions can be used to quantify time-kill data.
- Evaluation of drug candidates (ETX0914) and mutants (gyrB).
- Estimated parameters can be used for pharmacodynamic modelling.
Acknowledgements

University Hospital Örebro
- Daniel Golparian
- Susanne Jacobsson
- Magnus Unemo

Institute for Social and Preventive Medicine (ISPM)
- Christian Althaus
- Nicola Low

Institute for Infectious Disease (IFIK)
- Lucy Hathaway
