

Fredericton

Surveying on the Ellipsoid: A Canadian Hydrographic Perspective

Ian Church

Vertical Referencing of Hydrographic Sonar Data

Processing Multibeam Survey Data

- System Integration
- Raytracing
- Positioning (3D vs 2D)

Positioning of a Depth Sounding

Traditional Depth Sounding Position

Latitude

Longitude

Vertical: Tides, Draft & Squat

Why are these positions from different sources?

Horizontal: Positioning (GNSS)

Vertical Positioning

84 D7_

h

- What is the vertical reference for the numbers on a chart?
- They must be meaningful to a mariner

3g

3g

Ellipsoid Reference Survey (ERS)

- Find a way to transform data from the Ellipsoid to Chart Datum
- FIG #62 (Mills & Dodd, 2014)
- Know how to do it Lots of potential ways to get the separation

Challenge for Canada

- Canada has a special challenge
 - We need to have agreement across the country long coastline, lots of water and limited resources
 - Few tide gauges and lots of open water
 - Makes interpolation of CD between gauges impossible.

Interpolation works well in a Narrow Channel, but what about in an Open Bay?

Hudson Bay M2 and K1 Amphidromes (Co-Tidal Charts) 2005 Version (WebTide)

Continuously Varying Chart Datum (CVD) for Canada

Figure 1. Tide stations and the four working grid domains, each portrayed in a separate color.

Robin, C., Nudds, S., MacAulay, P., Godin, A., De Lange Boom, B., & Bartlett, J. (2016).
Hydrographic Vertical Separation Surfaces (HyVSEPs) for the Tidal Waters of Canada. *Marine Geodesy*, 39(2), 195–222.

CD Depth = Sonar Depth + Offsets + Ellipsoid - SEPSEP = N + SST + HModel

CD Depth = Sonar Depth + Offsets + Ellipsoid - SEPSEP = N + SST + HModel

Geoid-Ellipsoid Separation Models

- Canada: CGVD2013 (CGG2013)
- USA: Geoid12A: NAD83 \rightarrow NAVD88 (hybrid Geoid)
- USA: USGG2012: WGS84 \rightarrow Geoid
- International: EGM08

CGVD2013 Error Map

NRCAN, 2014

CGG2013 Minus GGeoid14

3

Research Analysis by UNB GGE MScE Student **Weston Renoud**

0.40

0.30

0.20

0.10

-0.00

-0.10

-0.20

-0.30

-0.40

Resolution and Akpatok Islands

CGG2013

GGeoid14

Differences of +/- 40 cm

CD Depth = Sonar Depth + Offsets + Ellipsoid - SEPSEP = N + SST + HModel

Dynamic Ocean Topography

OCEAN DYNAMIC TOPOGRAPHY, 1993-2006

DOT: Associated Epoch and a **Reference Geoid**

- Sea Surface Variations Ö
 - Ocean Currents: 1 m
 - Waves
 - Sun Heating: 0.3 1 m
 - Storms, Pressure, Winds. etc

SATELLITE

SEA SURFACE

GEOID

CD Depth = Sonar Depth + Offsets + Ellipsoid - SEPSEP = N + SST + HModel

Hydrodynamic Model

55

21

WebTide

(Hannah, Greenberg, Dupont et al.) Scotian Shelf Model

M2 Amplitude

➤ Tides:

- Limited Tide Gauge Network
- Hydrodynamic Models

Canadian Tidal Model Coverage

Match the 2-Dimensionally Varying Chart Datum from Hydrodynamic Model to Established Chart Datum

Continuous Vertical Datum

Accuracy estimates:

CANEAST7.5cmCANWEST6.9cmCANNORTH6.6cmCANHUD17.7cm

For CGG2013 single average error of 2.5 cm used

Tide stations and the four working grid domains, each portrayed in a separate colour, duplicated from Robin et al (2016)

CCGS Amundsen icebreaker – Wert (2004)

Water Levels from GNSS

MV AIDAblu Duplicated from Reinking et al (**2012**)

Photo of the GPS-Catamaran at M2 tide gauge location, duplicated from Bonnefond et al (**2003**)

Princess of Acadia – Wardwell (2008)

RV Nuliajuk

Part of OMG Arctic Mapping Program 2012-2014

Water Height Reduction $H_{wl} = h_{ellip} - N - heave_{vessel}$ $- heave_{lever} - squat - h_{ant}$ - wlz

Where:

- *hellip* the PPP solution height above NAD83(CSRS), *N* the geoid undulation from CGG2013 for the position of the vessel,
- *heavevessel* the vessel heave as reported at the ship's reference point,
- *heave*_{lever} induced heave due to offsets of the antenna from the ship's reference point,
- *squat* vessel squat as a function of the speed over ground,
- *h*ant height of the GNSS antenna above the ship's reference point, and
- *wlz* height of the ship's reference point above the water.

GNSS Water Height and Tide Observations

Comparison of GNSS Water Heights to Observations at active Tidal Station: Frobisher's Farthest – Frobisher Bay

Initial Results and Validation

- NRCAN PPP solutions for the forward mounted CNAV3050 were used as observations
- Estimates of Mean Sea Level wrt Ellipsoid
- Grids were binned at 3 km

2500

2000

1500 tino 1000

500

0

-0.4

-0.2

- The hydrographic community has unique challenges for vertical referencing vs. land surveying
- Ellipsoid Referenced Surveys (ERS) are now possible for all Canadian Waters
- The CVD solution must be continually refined and improved as better Geoid Approximations, DOT estimates and Tidal Estimates become available
- There needs to be additional validations throughout the CVD domain to verify stated uncertainties and to confirm that vertical accuracy requirements are being met

Questions?

ACLSOAATC

UNIVERSITY OF NEW BRUNSWICH

UNB Engineering

CHC-NSC 2018

www.chc-nsc2018.ca

NEW BRUN WICK

