

Sportsfield Maintenance: Agronomic Standards

Download presentation at http://bit.ly/AARFP2019

Scope: Turf Industry

- Estimated 360,000 hectares of managed turf in the prairies; Alberta, Sask., Manitoba
- Annual expenditure of \$1.6-2.2B/yr
- Prairie turf represents
 - Sod growers
 - Lawn care companies & homeowners
 - Schools
 - Parks & Sports fields
 - Golf Courses

Community Benefits of Turf

1. Physical activity

a. Reduces health care

2. Economic generator

a. Grows communities via Rec. venues

3. Benefits mental health

a. Social service costs

CO

Environmental Benefits of Turf

- 1. Reduces Runoff
- 2. Prevents Erosion
- 3. Replenishes air
- 4. Promotes safety
- 5. Regulates Temperature
- 6. Sequesters Carbon

DS

CO

Agronomic Principles For Better Turf

- Plant Available Water
- Soil Health and Nutrition
- Cultural Strategies

Comparing Sand vs Soil

Internal Drainage

Surface Drainage

Organic accumulation, especially in the upper profile, apparent after 11 years in this sand-based football field sample core. © Ross Kurcab, CSFM

Sand or Soil? Variables of Consideration

- Region and Climate
- Soil depth
- Base Drainage
- Hydraulic conductivity
- Irrigation source
 - salinity & availability
- Compaction tolerance
- Cost

Type A - Sand Based, Internal Drainage

Perched table

California Method

Type C+ - Soil Construction w/Surface Drainage

Sand vs Soil: Plant Available Water

• Saturation, Field Capacity, Permanent Wilting point

Maximal water capacity (SW _{max})	Field Cap	acity (FC)	Permanent Wilting Point (PWP)	
Gravitation	Gravitational drainage		Plant available water (PAW)	

Soil Water: <u>Adhesive</u> and <u>Cohesive</u> Water

- Together, <u>adhesion</u> and <u>cohesion</u> create a film of water around soil particles
- Cohesion water is held loosely, can move in the soil, and be absorbed by plants
- The water rises to the point where gravity balances the adhesive and cohesive forces, resulting in field capacity

Soil Moisture & Capillary Rise

- Finer soils are affected
- Upon capillary rise, the soil water climbs to the soil surface
- Image:
 - fine textured soil
 - as capillary water rises, it carries dissolved salts
 - left behind (white salt crust)from evaporation

Shallow soils:

- Low sod strength
- Slow recovery
- Reduced gas exchange slows photosynthesis, growth is inhibited
- Capillaries wick from subsoil
- Surface never dries out

Minimum Soil Depth – 8"

- Common in residential developments
- Plants in shallow soils exhibit symptoms of nutrient deficiency, and will wilt, similarly to effects of water stress
- Carbon dioxide and toxic materials often build up in the soil (black layer)

Image: Black Layer

Movement of Water in Soils 3:34m, 5:34m,8:00m

When Soil Depth is inadequate

- Tendency to overwater
- Water displaces air required for respiration
- wet soils rapidly become oxygen deficient, or ANAEROBIC
- "Wet Wilt" plant suffocates

Image: Wet Wilt

Inadequate subgrade

Soil Health: "Tough Love"

Ensure adequate soil depth
Frequent watering promotes shallow rooting
Water deep, infrequently
Make roots work for it they will be better conditioned for summer stress

Example: Not Promoting "Tough Love"

- Frequent watering & fertilization promotes shallow rooting
- Maintain adequate moisture, apply when wilt is imminent
- Water deep, infrequently -"Tough love"
 - Make roots work for it they will be better conditioned for summer stress

OLDS COLLEGE

Motivation: Costs of Overwatering

Costs:

- Water costs
- Power to pump
- Wear and tear on irrigation systems
- reduced playability
- Mind infiltration rates
 - cycle/soak
 - Water for moisture NOT convenience

Soil Nutrition:

- Diagnose soil nutrient availability
- Determine soil pH
- Turf programs are often custom
 - regions and required nutrients are predictable (AB soils)

Buffered soils

- pH = Potential of Hydrogen
- Highly buffered soils must be managed for the unavailable nutrients
- Acid soils can be treated with Lime to increase pH
- We cannot lower pH we manage it

LDS

COLLEGE

Product choices

- Filler is added to assist spreading evenly
 - esp. w/low rates
- Particle sizing choices intended to penetrate canopy. Smaller=\$\$
- Consider granular rates and realistic applications

Blended VS Homogeneous

Urea: Pale yellow Phosphorus = White Potassium=Potassium

Organics

- Low N/P/K
 - o **5-4-2**
- Only effective during summer/warm periods
- Require microbial breakdown
- Very safe non burning
- Can be applied anytime
- Solar radiation benefit

LDS

COLLEGE

Goals for Nutrition:

- Minimizing losses
- Consistent application
- Avoid flush growth
- No speckling/burning
- Balanced feeding

0

 \circ = No Bailing Hay!

28

Shade and Energy

- Active chloroplasts (green grass) means turf is photosynthesizing
- Every day, turf builds energy/carbs to survive summer stress & winter
- *in the absence of light* turf utilizes its stored energy.

Carbohydrate and Storage

Spring Green-up

- Fall feed .5N/.5K minimum
- 10'C is minimum temp for germination of new seed
- .5lbs/P/1000ft² bi-weekly until established
- Evergreen tarps can speed recovery
- Seed to soil contact will improve establishment
 - slit seeders are great!

Minimizing Losses: Nitrogen actual uptake 40-70%

Immobilization - NH4NO3 - 10-40%

Leaching - NO3 - 0-20%

Volatilization - NH3 - 0-30%

Denitrification - NO3 - 35%

OLDS COLLEGE

Minimizing losses: Solubles

- Are soil active
- Applied at low rates
 .1-.75lbs/1000ft²
- Last between 10-14 days
 - o additives can extend
- Work well with surfactants drawn to roots
- Ideal when utilized with a granular program to "top up"
- Best for low rates

Minimizing losses: Slow release particles

- Controlled, uniform release
- More durable coating
- N, P and K coatings
- Release specified by manufacturer
- 75% slow release means 25% immediately available for "kick"

DS

Minimizing Losses:Foliar Feeding

- Uptake through waxy cuticle and stomata
- o ultra low rates (.001lbs/1000ft²)
 - o multiple apps req'd
 - "+" charged particles enter readily
 - Molecular size limitation
 "++"
- 76% absorption
- Circumvent soil problems
- o <2% loss
- Passive Process (Osmosis)
- organic chelated agents help penetrate the waxy cuticle

Minimizing losses: Stabilized Nitrogen

- Slowing nitrate to nitrite conversion
- Ammonium is stable.
 - NH4+ is positively charged, and held by negatively charged soil particles
- Nitrate is prone to leaching
 - (N03-) is negatively charged
- Stabilizing agents <u>slow nitrification:</u>
 - reduce the rate of nitrification in soils, which converts ammonium (+) to nitrate (-), and nitrate to nitrite (unavailable)

Stabilized Nitrogen Additive: Urease inhibitor NBPT (n-butvl thiophosphoric triamide)

- 1. Urea is converted via hydrolysis
 - Urea is transformed into <u>ammonium</u> (NH4+) via urease enzyme
 - Urease inhibitor <u>slows rate of</u> <u>hydrolysis</u>, to reduce volatilization
 - common in high pH

Nitrification Inhibitor: DCD (dicyandiamide)

- 2. Urea is converted via Nitrification
 - Conversion of <u>ammonium</u> (via bacteria) to <u>nitrate</u> (NO3-)
 - DCD inhibits
 denitrification bacteria
 - slows the conversion of ammonium (stable) to nitrite (unstable)

Nitrogen Management Strategies

When should I use Stabilized Nitrogen?

- Soils with high microbial populations will be most affected by stabilizers
- More valuable in warmer, wetter weather and climates (when microbes are active)
- Like organic fertilizers, stabilizers will have greatest effect in high microbe soils
- Fall applications proven to increase available N in the spring
 - (Prairie Turfgrass Research Center @ Olds College)

RCWReportNitrificationInhibitors.pdf

http://www.ipni.net/publication/nss.nsf/0/21B8084A341C98E085257E3C0077595B/\$FILE/ NSS-26%20Nitrification%20Inhibitors.pdf

Alberta's Sodic Soils

Steve (Na+)

John Dalton (Ca++)

Cultural Alternatives

Thatch Management

OLDS COLLEGE

Culprits of Thatch Buildup

- Thatchy species
- reduced microbial activity
- suppression of earthworms
 - insecticides, topdressing, compaction
- Excessive fertilization

Thatch removal: Vertical Mowing

- Dead and living layer of organic matter
- Propagative points (stolons, Rhizomes are contributors)
- If thatch is deeper than ⅓ height of cut, aeration will be necessary
- Microorganisms break down thatch - provided soils are healthy

OLDS COLLEGE

Thatch: Vertical Mowing

Clippings do not contribute to thatch

OLDS COLLEGE

Aeration

Aerification:

- × Relieve soil compaction.
- × Restore soil air and water pore spaces.
- × Enhance water & air movement into the soil.
- × Removes thatch
- × Changes or modifies soil structure.
- × Stimulate root growth.

Coring Alternatives

OLDS COLLEGE

Solid Tine Aeration

Alternatives to coring: Slicing and Spiking

TOPDRESSING

- × Coarse over fine
- × Eliminates surface irregularities
- × Modify soil profile
- X ¹/₃ Rule : Don't bury

LDS

COLLEGE

Topdressing w/compost

- × Slow release Nitrogen source
- × Safe, non burning
- × Combined with Clay, produces topsoil
- × Improves soil structure
- \times Incorporate with aeration

Topdressing and Rootzones: particle sizes

OVERSEEDING

Cultivar Choices

- New and improved cultivars are produced annually
- Salt tolerant
 - Drought tolerant
- Deep green/low fert
- □ NTEP
 - National Turfgrass
 Evaluation program

Apply the right tool for the job

Overseeding Success

- Seed to soil contact
- Pure Live Seed
- Germination rate
- Frequent LIGHT irrigation until germinated
- Starter (post germination)
 - 12-30-8 (or similar)
 - .5lbsP/1000ft² bi-weekly
 - 4x or until established

Field Improvements

Sharp blades

Aesthetics and striping

Implements

Educate - Proper Equipment

Common Problems

OLDS COLLEGE

Surface Drainage?

Fertilization Practices

HOC Setting & Mowing Frequency

Infield Grooming & Safety

Weed Control & Healthy Turf

Carbohydrate Storage?

Hmmm...

Work Smarter NOT Harder

Before your investment - Take a sample

Summary: Improve your fields

- 1. Take a soil test
- 2. Manage compaction & Minimize thatch
- 3. Sharpen your mower blades
- 4. Apply slow release, balanced Fert & Fall feed
- 5. Educate your staff and user groups

Keep your fields Open and Healthy!

Download presentation at http://bit.ly/AARFP2019

Thank you!

- Turf Science Certificate (Online)
- Diploma in Turfgrass Management
- Bachelor in Golf Course Management

