

The Economics of Long Work Hours: Using Incentives to Change Behavior Keynote 2 Working Time Society's 24th International Symposium on Shiftwork & Working Time Coeur d'Alene, Idaho

September 11, 2019 Prof. Michael H. Belzer Wayne State University, Detroit

© Michael H. Belzer, 2019

Truck Fatalities Rising

Deaths from truck crashes in the US

In 2016 there were 4,317 total fatalities from large truck crashes in the US.

A large truck is defined as a truck with a gross vehicle weight rating greater than 10,000 pounds. The "All vehicle types" category includes crashes involving passenger cars, light trucks, buses, motorcycles, or any other type of motorized vehicle. Chart: The Conversation, CC-BY-ND • Source: U.S. Federal Motor Carrier Safety Administration • Get the data

Fatal truck-involved crashes are increasing:

- 40% between 2009 and 2017
- 45% per VMT between 2009 & 2017
- 8% in last year (2016 to 2017)

Why use economics to understand safety and health?

- "The Human Cost of Amazon's Fast, Free Shipping"
 - NY Times September 5, 2019
 - <u>https://www.nytimes.com/2019/09/05/us/amazon-delivery-drivers-accidents.html</u>
- "How Amazon hooked America on fast delivery while avoiding responsibility for crashes"
 - *ProPublica's* <u>Big Story</u> September 5, 2019
 - <u>https://features.propublica.org/amazon-delivery-crashes/how-amazon-hooked-america-on-fast-delivery-while-avoiding-responsibility-for-crashes/</u>
- "The Cost of Next-Day Delivery"
 - BuzzFeed August 31, 2019
 - <u>https://www.buzzfeednews.com/article/carolineodonovan</u> /amazon-next-day-delivery-deaths

Work Stress and Crashes

- The stresses associated with work as a CMV driver put them at significant health and safety risk
 - Irregular schedules
 - Economic pressures
 - Exceedingly long work hours
- Stresses associated with "Just In Time" logistics
 - Pressure for scheduled delivery
 - Pressure for rapid delivery
 - Pressure to cut cost
- Amazon stories identify all of these stressors
 - Long, irregular, and stressful work hours lead to fatigue
 - Fatigue leads to crashes and chronic illness.

Vulnerable Workers, Vulnerable Public

- Part time, on-demand work completely controlled by cargo owner, which is Amazon
- Amazon subcontracts most of its delivery business
 - Amazon deflects liability for all crashes
 - Amazon deflects liability for all injury and death
- Economists call these costs "externalities"
 - External costs paid by society
 - External to the market (cost not captured in the price)
 - Cost not captured by price of service is economically inefficient

What are these costs?

- Fatigue
- Stress-related illness
- Stress-related driver injury
- Crash costs
- Damaged market, unpaid taxes, under-insured vehicles and drivers, reckless disregard for public

Workplace Safety and Health Requires Economic Analysis

• Competition drives carriers to lowest price

- Lowest price drives carriers to lowest cost
- Lowest cost drives rates down and squeezes drivers
 - Unqualified, dangerous drivers
 - Dangerous workplace pressure
 - Dangerous hours of work

Carriers outsource to smaller carriers and individual contractors

- Subcontracting cuts employment cost while adding layers of overhead
 - Workers' compensation
 - Employment taxes (like Social Security and Medicare)
 - Training, including safety training
- Eliminate risk that drivers engage in "protected concerted activity"
 - Including but not limited to unionization
- Eliminate liability for safety risk
 - Liability pushed down to contractor
- Not just in trucking (Continental Express crash is airline example)

WHY DOES TRUCK DRIVING INVOLVE LONG WORKING HOURS?

SOURCES

- Belman DL, Monaco KA and Brooks TJ. (2004) *Sailors of the concrete sea: A portrait of truck drivers' work and lives,* East Lansing, Mich.: Michigan State University Press.
- Belzer MH. (2000) *Sweatshops on Wheels: Winners and Losers in Trucking Deregulation,* Oxford, UK and New York, NY: Oxford University Press.
- Belzer MH and Sedo SA. (2018) "Why Do Long Distance Truck Drivers Work Extremely Long Hours?" The Economic and Labour Relations Review 29(1): 59–79.
- CHEN Guang X., Sieber WK, Lincoln JE, et al. (2015) "NIOSH national survey of long-haul truck drivers: Injury and safety." *Accident Analysis & Prevention*: 66–72.
- Kudo, T., & Belzer, M. H. (2019). "The association between truck driver compensation and safety performance." *Safety Science*, 120, 447-455.
- Kudo, T., & Belzer, M. H. (forthcoming, Dec. 2019). "Safe Rates and Unpaid Labor: Non-Driving Pay and Truck Driver Work Hours." *Economic and Labour Relations Review*.

FACT: Truckers Work Long Hours

- UMTIP 1997 survey showed <u>median</u> non-union driver worked 65 hours/week
 - 55% not paid for loading/unloading
 - 70% not paid for waiting or other on-the-job time.
- NIOSH 2010 survey shows <u>median</u> employee driver (almost all non-union) works 60 hrs/week
 - Employee drivers average 63 hours of work per week
- NIOSH 2010 survey also shows 20% exceed 75 hours/week
 - On average, 10.5 hours of work/week (22%) are unpaid
 - On average, 27% of employee drivers' work week is unpaid labor
- Truck drivers are not paid for all work time
- That is why surveys show long-haul drivers regularly work an impossible (illegal) number of hours.

Drivers in Black Work Excessive Hours

n = 1,254 long haul truck drivers

•

Why so many hours?

- If the regulations restrict CMV drivers to 60 hours of work per week, why do half of all long-haul drivers exceed this limit?
- How do carriers and drivers get around the rules?
- How do FMCSA regulations continue to effectively permit excessive hours?
- The answer rests in conflicting definitions of "work".

DOL-FLSA Definition of Work

- All time during which employees work for an employer, including waiting time, is payable:
 - Unless employer frees the worker from work for specific time and employee knows in advance when work time starts and ends; and
 - Unless worker has practical freedom to leave the place of work to go about his/her personal activity; and
 - Unless worker is not engaged in the work for which he/she was hired, including being available for a call;
 - All time is payable if worker is located away from employer's place of work, and wait time is part of employee's regular work

DOT-FMCSA Definition of Work

- Waiting time is <u>non-work</u> time as long as:
 - "The driver is relieved of all duty and responsibility for the care and custody of the vehicle, its accessories, and any cargo or passengers it may be carrying."
 - "During the stop, and for the duration of the stop, the driver must be at liberty to pursue activities of his/her own choosing."
 - Example: looking at his phone or reading (circumstances limit choices)
 - Companies may interrupt driver's free time and sleep time.
 - Off duty time during a shift may have indeterminate start and end time.
- FMCSA regulations allow carriers to order drivers to log non-driving FLSA-defined work time off duty
 - Drivers have economic incentive to log unpaid work time off duty
 - Since FMCSA has no position on driver pay, grounds for definitions are quite different.
 - Results are inconsistent with policy goal to limit hours of work

Time is Money

- Economic theory predicts that workers will trade labor for leisure as their earnings increase.
- Rarely can we see this in the data but long hours in trucking allows us to observe it.
- We will test the Target Earnings Hypothesis
 - Drivers work to reach their earnings targets
 - Target earnings are enough to pay their bills
 - Drivers should reduce work time after reaching their targets

University of Michigan Trucking Industry Program Driver Survey 1997-98

- Truck stop survey of 233 employee drivers
- These employee drivers worked an average of 64.5 hours per week with a minimum of 25 and a maximum of 126
- Drivers earned an average of 28.6¢ per mile
 [45¢/mi in today's dollars; 5% less than today]
- Averaged 13.7 years of experience
- Average company tenure of 3.5 years

Two-stage least-squares model

- Stage 1: Estimate pay rate based on driver characteristics
- Stage 2: Estimate hours based on rate of pay

Stage 1: Estimate Pay Rates

 $Rate_{i} = \beta_{1} + \beta_{2}X_{i2} + \beta_{3}X_{i3} + \dots \beta_{K}X_{iK} + \varepsilon_{i}$

- Rate_i is the mileage rate for the ith driver
- X's represent characteristics of the driver and job that are relevant to determining the mileage rate
- β 's are the parameters to estimate
- ε summarizes the random components and unobserved characteristics of the individual driver and job.

Table 1: Mileage Rate Equation

		Standard	
Variable	Estimate	Error	t-value
Constant	0.241***	0.016	14.918
Experience	0.002**	0.001	2.133
Experience ²	-4.1E-05	0.000029	-1.437
Tenure	0.004**	0.0017	2.049
Tenure ²	-0.00011**	0.000054	-1.972
HS Degree	0.000574	0.008	0.076
Union	0.097**	0.057	1.726
White	0.016**	0.008	1.858
Union by White	-0.04	0.058	-0.695
Previous Moving Violation	0.007	0.007	1.051
Medium Firm	0.013**	0.006	2.065
Large Firm	0.026***	0.009	3.164
Private Carriage	-0.020	0.010	-1.900
Dry van	-0.008	0.007	-1.221
Miles per Dispatch	-0.00002***	0.000006	-3.276
Unpaid Time	-0.010	0.008	-1.192
Paid Days Off	0.001**	0.0004	2.071

Sample Size	233	Dependent variable:	Mileage Rate
R-squared:	0.385	Rbar-squared:	0.340
Residual SS:	0.431	Std error of est:	0.045
F(16,216):	8.457	Probability of F:	0.000

Stage 2: Estimate Weekly Hours

 $Hours_{i} = \gamma_{1} + \gamma_{2} W_{i} + \gamma_{3} W_{i}^{2} + \gamma_{4} Z_{i4} + \dots \gamma_{K} Z_{iK} + \varepsilon_{i}$

- Hours_i are the weekly hours of the ith driver
- W_i is the fitted wage of the ith driver <u>from the</u> wage estimation equation
- Z's represent characteristics of the driver and job that influence the number of hours worked
- ε_i captures the random components of the hours worked not included in the explanatory variables

Table 2: Weekly Hours of Work Equation

		Standard	
Variable	Estimate	Error	t-value
Constant	-116.29**	52.88	-2.199
Fitted Rate	776.75**	370.8	2.095
Fitted Rate ²	-1266.30**	637.3	-1.987
Age	3.119***	0.849	3.674
Age ²	-0.035***	0.001	-3.578
Married	-4.853*	2.548	-1.905
Other Income (\$1,000)	0.021	0.067	0.348
% Night Driving	9.241	5.598	1.651
% Non-Driving Time	-21.820**	9.788	-2.229
Unpaid Time	11.066***	3.441	3.216
Union	10.842	9.372	1.157
Miles per Dispatch	0.0007	0.002	0.313
Private Carriage	-4.082	3.464	-1.178
Tenure	-0.365*	0.201	-1.820
Last Home	-0.006	0.125	-0.045

Sample Size:	233	Dependent variable:	Hours per Week
R-squared:	0.164	Rbar-squared:	0.111
Residual SS:	63611.8	Std error of est:	17.082
F (14,218):	3.061	Probability of F:	0.000

Estimated Labor Supply Curve for Long-Distance Truck Drivers

We estimate that drivers would work 60 hours at just less than 40 cents/mile in 1997 dollars.

That is 60 cents/mile in 2017 dollars.

"Safe Rates and Unpaid Labor:

Non-Driving Pay and Truck Driver Work Hours"

Kudo and Belzer, *Economic and Labour Relations Review* (forthcoming December 2019)

- Data: NIOSH Long Haul Truck Driver Survey
- Results
 - Pay for non-driving time reduces driver work hours significantly.
 - Supports the "target earnings hypothesis".
 - Supports Belzer and Sedo's backward-bending labor supply curve.
 - <u>Takeaway</u>: Drivers can and will log unpaid non-driving labor off duty, allowing them to drive more hours and reach targets.
 - Drivers paid for non-driving work will reduce their work hours to a safer level – particularly if the carrier requires them to log it.

Policy Implications

- <u>Higher pay rates and pay for all work time</u> will reduce drivers' incentives to work illegal hours
 - Drivers more likely will log all work time
 - This will reduce hours and improve safety
- <u>Requiring pay for all labor time</u> would reduce incentive to log DOL-defined work time off duty
 - Driver incentives will line up with policy objectives
 - Carriers cannot whipsaw drivers.
 - Cargo owners cannot whipsaw carriers.
 - Neither can race to the bottom for cheap labor.
 - Might make truck driving attractive again.

CAN YOU PAY FOR SAFETY? DOES SAFETY PAY?

SOURCES

- Belzer MH, Rodriguez DA and Sedo SA. (2002) Paying for Safety: An Economic Analysis of the Effect of Compensation on Truck Driver Safety. Washington, DC: United States Department of Transportation, Federal Motor Carrier Safety Administration, 111; appendices.
- Rodriguez DA, Rocha M and Belzer MH. (2004) The Effects of Trucking Firm Financial Performance on Driver Safety. Transportation Labor Issues and Regulatory Reform 10: 35-55.
- Rodriguez DA, Targa F and Belzer MH. (2006) Pay Incentives and Truck Driver Safety: A Case Study. Industrial and Labor Relations Review 59: 205-225.
- Faulkiner, M. R., & Belzer, M. H. (2019). "Returns to compensation in trucking: Does safety pay?" *The Economic and Labour Relations Review*, 30(2), 262-284.

A Case Study

The Problem

- J. B. Hunt: The nation's second largest truckload carrier in 1995
 - 96% driver turnover
 - Carrier experienced driver safety and driver reliability problems

The Solution

- Raised wages by 38% in one major move
 - Before the raise: 37¢-40¢/mile (in 2018 dollars)
 - After the raise: 58¢-60¢/mile (in 2018 dollars)
- Closed down training schools & hired experience
- Focused on driver retention

Higher Pay, Lower Crash Rates

Al Crashes

 Large Crashes

Why safer drivers earn more money

- Efficiency Wage Hypothesis
 - Remember prior research estimated safe rate at 60¢/mi
 - Current market-clearing wage is about 42.5¢/mile for new hire with one year of experience
 - That's 27¢/mile in backward-bending labor supply curve
 - Average driver at that rate works 68 hours and needs to work more to pay bills.
 - Higher paid truck drivers have incentive to take fewer risks and work safely to retain a higher than marketclearing wage
 - Higher wages attract workers with better skills and safety records
 - This helps explain why higher wages are associated with fewer hours

Pay Level Findings

- Overall, 10% higher driver pay was associated with 40% lower crash probability
- Study method: survival analysis (Cox regression).
- At the mean, every penny more in first observed pay led to 11.1% lower crash probability
- At the mean pay rate of 34¢ per mile (56¢ in 2019), every 10% higher first observed pay was associated with a 34% lower crash probability
- A 10% pay increase was associated with a 6% lower crash probability
- At the mean, each year of tenure reduced crash probability by 16%
- Higher pay reduced turnover and increased age, experience, and other characteristics

JB Hunt found there is a "Safe Rate"

Rate	Hours	
\$0.286	69.2245482	Sample Mean
\$0.307	69.7670643	Max Hours at \$0.3075
\$0.308	69.7650398	Tipping point for reduced work hours
\$0.370	64.693353	Rate set by J.B. Hunt to reduce turnover & crashes
\$0.394	60.1164762	SAFE RATE: 60 hours of work
\$0.395	59.8941155	Rate required to reduce hours of work below legal limit

- Depends on society's preference for safety.
- I assume 60 hours per week (the legal limit) is the optimal tradeoff between efficiency and safety.
- The "safe rate" is the rate of pay needed to give drivers incentive to work 60 hours/week.
- Using the DOL's CPI calculator, the "safe rate" in 2017 was \$0.60/mile.

"The association between truck driver compensation and safety performance"

Kudo and Belzer, 2019

- Using NIOSH Long Haul Truck Driver Survey data
- Efficiency wage theory suggests higher paid drivers safer
- Dependent variable: Expected value of the number of moving violations in past 12 months
- Zero-inflated negative binomial regression because of the number of null observations
- Significant independent variables
 - Mileage pay rate
 - Employment-based health care

Safe Rates and Return on Investment Faulkiner and Belzer 2019

• ROI:

- Lower paid inexperienced drivers: -25%
- Higher paid experienced drivers: 285%
- Expected Net Present Value of higher paid experienced drivers is \$10,474 greater than E(NPV) of lower paid inexperienced drivers, and stable over multiple years.
- Better paid drivers:
 - More experienced
 - Safer (lower crash cost and more reliable)
 - More productive (about 1,000 more miles/week)
 - More stable: stay with the company
 - Lower search, training, hiring cost
 - Lower turnover rates
 - Lower turnover fleets are safer

THE ECONOMIC FORCES UNDERLYING TRUCK DRIVER JOB STRESS

SOURCES

- Panel on Research Methodologies and Statistical Approaches to Understanding Driver Fatigue Factors in Motor Carrier Safety and Driver Health. (2016) *Commercial Motor Vehicle Driver Fatigue, Long-Term Health, and Highway Safety: Research Needs*, Washington: National Academies Press. <u>https://www.nap.edu/download/21921</u>
- Belzer MH. (2018) Work-stress factors associated with truck crashes: An exploratory analysis. *The Economic and Labour Relations Review* 29:3. 289-307.

Work-Stress Leads to Truck Crashes

- This study used Large Truck Crash Causation Study (LTCCS) data to assess work linkage to safety
 - FMCSA, NHTSA, NASS supervised collection
 - 49 data sets total; 34 sets concatenated for this analysis
 - 1,000 variables; 967 crashes, including 1,127 large trucks, 251 fatalities, and 1,408 injuries
 - My analysis has 710 cases.
 - Dependent variable: "critical reason for the critical event"
 - Crash reconstruction method
- No valid compensation data recorded
- I created a work pressure index in addition to existing unique work-related variables

General Linear Model – ANOVA

Assigned Critical Reason [for critical event] = $\alpha + \beta_1 + \beta_2 + \beta_3 + \beta_4 + \beta_5 + \beta_6 + \beta_7 + \beta_8 + \varepsilon$ where:

- $\beta_1 =$ Work Pressure Index [ordinal continuous; 1-7]
- $\beta_2 = Aggression Count$ [computed ordinal; 1-10]
- $\beta_3 = Fatigue [discrete]$
- β_4 = Class Years [continuous]
- $\beta_5 = Class Years Sq$ [continuous]
- β_6 = Safety Bonus [discrete]
- β_7 = Hours Driving [this trip; continuous; 1-11]
- β₈ = Driver Reported Mileage Pay This Trip [discrete]
- ε = unmeasured factors (residual or error)

Work Stressors that Predict Crashes

Significant coefficients for the independent variables replace the

betas in the equation.

Assigned Critical Reason for the Critical Event = 0.8318 +

 $β_1$ (0.5822) Work Pressure Index* + $β_2$ (1.484) Aggression Count* + $β_3$ (0.9145) Fatigue** + $β_4$ (-0.0231) Class Years* + $β_6$ (-0.3187) Safety Bonus** + $β_7$ (-0.0974) Hours Driving* + $β_8$ (-0.2245) Mileage Pay This Trip** + ε

* Continuous ** Discrete

Conservative conclusion based on LTCCS

- Workplace stress, together with "fatigue" and "safety bonus", predicts about 15% of probability that the truck driver is last driver whose actions might have prevented the crash.
- Aggression count may be attributable to work pressure or personality; data are inconclusive.
- Predictive value of work pressure, fatigue, and safety bonus, is higher than any other factors in the LTCCS.
- Model does not include compensation.

DETENTION TIME: EXTRA TIME DURING WHICH CARGO OWNERS HOLD UP DRIVER LOADING OR UNLOADING

SOURCES

- Dunn NJ, Hickman JS, Soccolich S, et al. (2014) "Driver Detention Times in Commercial Motor Vehicle Operations". Washington: Federal Motor Carrier Safety Administration, xiv; 49.
- Office of the Inspector General. (2018) "Estimates Show Commercial Driver Detention Increases Crash Risks and Costs, but Current Data Limit Further Analysis."
- Speltz E and Murray D. (2019) "Driver Detention Impacts on Safety and Productivity". American Transportation Research Institute.

Detention Time Adds More Risk

- Office of the Inspector General (DOT-OIG) did "detention time" study in 2017.
 - "Detention" defined as holding up driver more than two hours loading and/or unloading
 - OIG reports this is "industry standard"; does not measure all time
- Two-hour "industry standard" was created during the regulated era (before 1980), when tariffs allowed two hours of loading or unloading before cargo owner incurred "demurrage" charge.
 - Collective bargaining contracts required payment for all work time according to FLSA definition of work
 - Most drivers were paid for all time because 60% were Teamsters.
- After deregulation, shippers still expected two-hours free time.
 - Non-union trucking companies could not collect from cargo owners and stopped paying drivers.
 - Declining union bargaining power meant fewer drivers could collect.

Detention Time and ELDs/ELBs

- Electronic logbooks cannot determine driver activity.
- They record only that the truck is stopped.
 - FMCSA allows carriers to tell drivers to log off duty when they get to shipper or receiver.
 - FMCSA does not require that drivers report their activity at each change of duty; just location.
 - FMCSA inspectors have to take their word for it.
- Drivers log FLSA paid work time as off duty because they don't get paid
 - FMCSA permits this if company authorizes it.
 - This is why surveys show most drivers exceed 60 hrs

Detention Time and Logging

- ATA currently estimates the average length of haul at about 550 miles.
 - This means average driver may load and unload once/day.
 - Drivers give away up to four hours/day <u>at little or no pay</u>.
- Unpaid delay time values carrier and driver delay time at zero.
 - Detention kicks in after two hours
 - Carriers may find it hard to collect
 - No enforcement mechanism
- Economic principle
 - People will consume an infinite amount of a free good
 - Shippers and receivers have little incentive to conserve free carrier delay and labor time.

OIG Detention Time Study Results

- First 15-minute delay beyond 2 hours increases the average expected crash rate by 6.2%.
 - Adds one additional crash per 1,000 power units
 - 6,509 additional crashes per year
 - Every 5 percentage point increase in proportion of stops resulting in detention linked to 4.7% increase in expected crash rate
- 2014 FMCSA detention study found that
 - 10% of all stops experienced 2+ hours detention time
 - For those stops, delay time averaged 1.4 hours
 - This means 10% of all stops had total stop time 3.4 hours
 - Smaller carriers had more delay than larger carriers

Detention Time Costs Money

- Detention is associated with between \$1.1 billion to \$1.3 billion lower annual earnings for for-hire CMV drivers in the truckload sector.
 - That's between \$1,281 and \$1,534 per driver per year
 - Helps to explain labor shortage
- Detention reduces motor carrier net income by \$250.6 to \$302.9 million per year
- Unpaid delay time contributes to excessive driver labor time
- Excessive labor times drives up crash risk

Summing Up

- The low road costs the economy billions of dollars yearly
 - Wasted time for drivers
 - Wasted time for carriers
 - Major contribution to the perceived "driver shortage"
- Encourages inefficient use of all resources
 - Labor
 - Capital
 - Reduces American Gross Domestic Product
- Has profound safety and health cost, which also reduces GDP
- Because commercial transport is a business, economic forces explain safety and health outcomes
- Economic approach to safety and health points the way to policy solutions
- Safe rates will save lives, allocate resources efficiently, and grow the economy

References

- 2018 Pocket Guide to Large Truck and Bus Statistics. (2018). Retrieved from Washington: <u>https://rosap.ntl.bts.gov/view/dot/36537</u>
- Belman DL, Monaco KA and Brooks TJ. (2004) Sailors of the concrete sea: A portrait of truck drivers' work and lives, East Lansing, Mich.: Michigan State University Press.
- Belzer MH. (2000) *Sweatshops on Wheels: Winners and Losers in Trucking Deregulation,* Oxford, UK and New York, NY: Oxford University Press.
- Belzer, MH. (2018) "Truck Drivers are Overtired, Overworked, and Underpaid." The Conversation. July 25. https://theconversation.com/truck-drivers-are-overtired-overworked-and-underpaid-100218
- Belzer MH. (2018) "Work-stress factors associated with truck crashes: An exploratory analysis." *The Economic and Labour Relations Review* 29:3. 289-307.
- Belzer MH and Sedo SA. (2018) "Why Do Long Distance Truck Drivers Work Extremely Long Hours?" *The Economic and Labour Relations Review* 29:1. 59–79. <u>https://goo.gl/M5Xx47</u>.
- CHEN Guang X., Sieber WK, Lincoln JE, et al. (2015) NIOSH national survey of long-haul truck drivers: Injury and safety. Accident Analysis & Prevention 85: 66–72. <u>https://www.ncbi.nlm.nih.gov/pubmed/26397196</u>
- Dunn NJ, Hickman JS, Soccolich S, et al. (2014) Driver Detention Times in Commercial Motor Vehicle Operations. Washington: Federal Motor Carrier Safety Administration, xiv; 49. <u>https://rosap.ntl.bts.gov/view/dot/193</u>
- Faulkiner MR and Belzer MH. (2019) Returns to compensation in trucking: Does safety pay? *The Economic and Labour Relations Review* 30:2. 262-284.
- Hedlund J and Blower D. (2006) Using LTCCS Data for Statistical Analyses of Crash Risk. Large Truck Crash Causation Study Analysis Series. Washington: Federal Motor Carrier Safety Administration, 1-12. <u>https://ai.fmcsa.dot.gov/ltccs/data/documents/usingtheltccsdata.pdf</u>
- Kudo T and Belzer MH. (2019) "The association between truck driver compensation and safety performance." Safety Science 120: 447-455.
- Kudo, T., & Belzer, M. H. (forthcoming Dec. 2019). "Safe Rates and Unpaid Labor: Non-Driving Pay and Truck Driver Work Hours." *Economic and Labour Relations Review* 30:4.
- Office of the Inspector General. (2018) Estimates Show Commercial Driver Detention Increases Crash Risks and Costs, but Current Data Limit Further Analysis. <u>https://www.oig.dot.gov/sites/default/files/FMCSA%20Driver%20Detention%20Final%20Report.pdf</u>
- Panel on Research Methodologies and Statistical Approaches to Understanding Driver Fatigue Factors in Motor Carrier Safety and Driver Health. 2016. Commercial Motor Vehicle Driver Fatigue, Long-Term Health, and Highway Safety: Research Needs. Washington: National Academies Press. <u>http://www.nap.edu/24818</u>
- Rodriguez DA, Targa F and Belzer MH. (2006) "Pay Incentives and Truck Driver Safety: A Case Study." Industrial and Labor Relations Review 59: 205-225.
- Speltz E and Murray D. (2019) "Driver Detention Impacts on Safety and Productivity". American Transportation Research Institute, 22. <u>https://truckingresearch.org/</u>

Supplemental Resources

- Belzer MH and Thörnquist A. (2020, forthcoming) "Economic Liberalization and Governance: Road freight transport liberalization in the United States and the European Union." In: Sheldon P, Gregson S, Lansbury R, et al. (eds) The Regulation and Management of Workplace Health and Safety: Historical and Emerging Trends. London: Routledge.
- Boros C. (2018) *Romanian Trucker, Polish Wage, Dutch Workplace: How salaries migrate across the EU in the road haulage business*. Available at: <u>https://theblacksea.eu/stories/romanian-trucker-polish-wage-dutch-workplace/</u>
- Boros C and Eliassen I. (2018) *Exposed: Norwegian-owned firm making truck drivers cheat safety test; East European drivers are fed answers for road health and safety exam in Slovakia*. Available at: <u>https://theblacksea.eu/stories/exposed-norwegian-owned-firm-making-truck-drivers-cheat-safety-test/</u>
- Boros C and Poortmans J. (2018) *Deadlock in Brussels over Trucking Wages: Eastern and Western Europe are at war over the salaries of drivers. Only the European Parliament can resolve the crisis. But there is a stalemate.* Available at: https://theblacksea.eu/stories/deadlock-brussels-over-trucking-wages/
- Fink L. (2011) Sweatshops at Sea: Merchant Seamen in the World's First Globalized Industry, from 1812 to the Present: The University of North Carolina Press.
- Fair Labor Standards Act (FLSA)
 - <u>https://www.employmentlawhandbook.com/flsa/fair-labor-standards-act-time-suffered-or-permitted-to-work/</u>
 - <u>https://www.law.cornell.edu/cfr/text/29/chapter-V</u>
 - <u>https://www.law.cornell.edu/cfr/text/29/part-785/subpart-C</u>
- Hedlund J and Blower D. (2006) Using LTCCS Data for Statistical Analyses of Crash Risk. Large Truck Crash Causation Study Analysis Series. Washington: Federal Motor Carrier Safety Administration, 1-12. <u>https://ai.fmcsa.dot.gov/ltccs/data/documents/usingtheltccsdata.pdf</u>
- Saltzman GM and Belzer MH. (2007) *Truck Driver Occupational Safety and Health: 2003 Conference Report and Selective Literature Review*. Washington, DC: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. <u>http://www.cdc.gov/niosh/docs/2007-120/</u>.
- Federal Motor Carrier Safety Administration Regulations on Hours of Service for Drivers: <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?gp=1&ty=HTML&h=L&mc=true&=PART&n=pt49.5.395</u> and Guidance: <u>https://www.fmcsa.dot.gov/regulations/title49/part/395</u>
- Viscelli, S. (2016). The Big Rig: Trucking and the Decline of the American Dream. Oakland, CA: University of California Press.

Supplemental Resources

Airline subcontracting

• Young R. (2010) "Flying Cheap". Frontline. USA: PBS, 56:32. February 9. https://www.pbs.org/wgbh/frontline/film/flyingcheap/

Amazon subcontracting

- O'Donovan, C., & Bensinger, K. (2019, August 31). "The Cost of Next-Day Delivery." *BuzzFeed*. Retrieved from <u>https://www.buzzfeednews.com/article/carolineodonovan/amazon-next-day-delivery-deaths</u>
- Callahan, P. (2019, September 5). "How Amazon hooked America on fast delivery while avoiding responsibility for crashes." *ProPublica*. Retrieved from: <u>https://features.propublica.org/amazon-delivery-crashes/how-amazon-hooked-america-on-fast-delivery-while-avoiding-responsibility-for-crashes/</u>
- Callahan, P. (2019, September 5). "The Human Cost of Amazon's Fast, Free Shipping." New York Times. Retrieved from: https://www.nytimes.com/2019/09/05/us/amazon-delivery-drivers-accidents.html

Professor Michael H. Belzer

Michael.H.Belzer@wayne.edu

go.wayne.edu/michael-belzer

LinkedIn: https://www.linkedin.com/in/soundscience

