

-

JOIN THE JOURNEY TO NET ZERO

100

Power Generation Symposium Europe

....

This PowerPoint presentation is protected by copyright Rolls-Royce Solutions GmbH expressly reserves all rights to this presentation. Publication, duplication or disclosure to third parties – even in the form of excepts – are strictly forbidden unless expressly approved by the Management of Rolls-Royce Solutions GmbH. Rolls-Royce Solutions GmbH furthermore reserves all rights, particularly in regard of the use, processing reproduction of content related to any intellectual property claims.

Fuel Flexibility: Increasing the sustainability of Internal Combustion Engines

PowerGen Symposium 2022

Michael Wagner

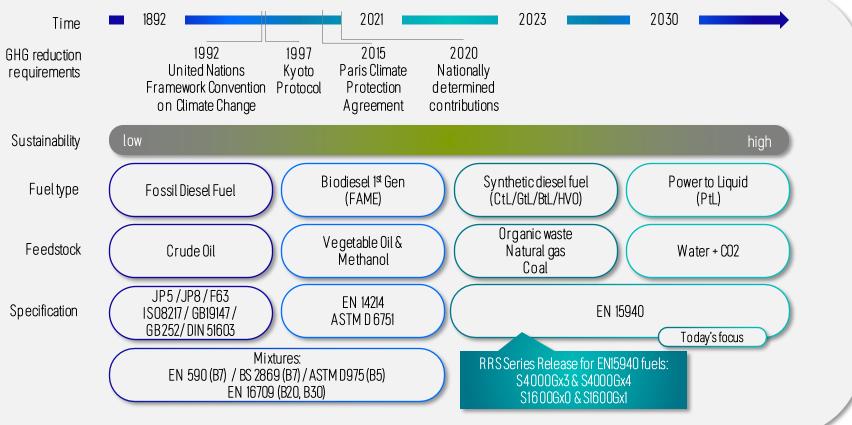
29th June 2022

in good faith based upon the latest information available to it, no warranty or representation is given; This information is provided by Rolls-Royce no contractual or other binding commitment is implied.

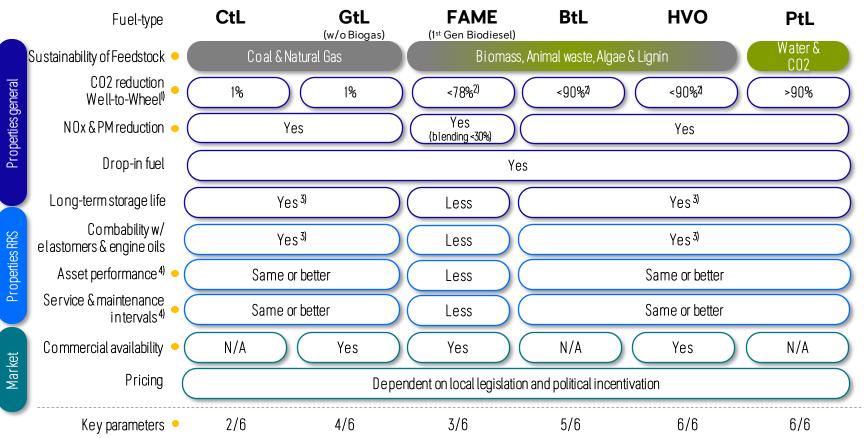
Michael Wagner

Director Product & Solutions Management - Stationary

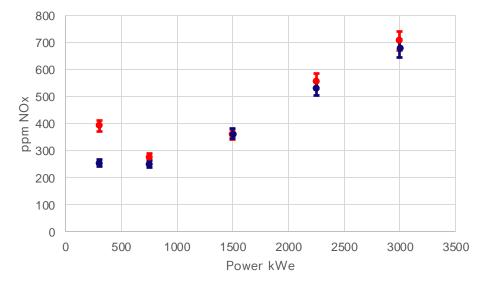
A Rolls-Royce solution


- Since 8 years with RRPS
- Background: Mechanical Engineering and Business (Technical University Graz)
- Nearly 30 year Power Gen professional (Jenbacher and General Electric)
- When not at work: Mountains, Travel, cooking/eating, ...

Alternative – Renewable Liquid Fuels for Diesel Engines


Development of fuels are triggered by GHG reduction requirements, variety of alternative fuels and feedstock will increase by time to aim sustainability

FAME = fatty acid methyl ester, CtL = Coal-to-Liquid, GtL = Gas-to-Liquid, BtL = Biomass-to-Liquid, HVO = Hydrogenated Vegetable Oils, PtL = Power-to-Liquid


6 key parameters identified to derive current and near-future sustainable fuel strategy, HVO & PtL are high ranked

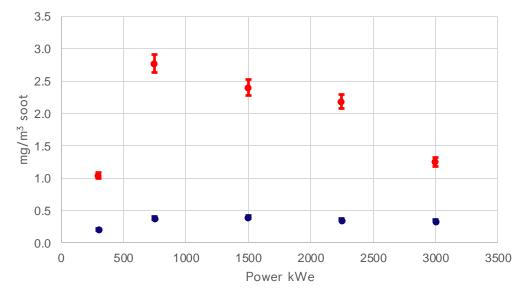
¹⁾ Compared to EN590 Fossil Diesel Fuel B0 = 95.1MJ/C02, ²⁾ Depend on feedstock, ³⁾No FAME Content, ⁴⁾ Compared to EN590 Fossil Diesel Fuel

Reduction of harmful pollutants

Nitrous oxides emissions (NOx) 3000kWe genset

Diesel • HVO

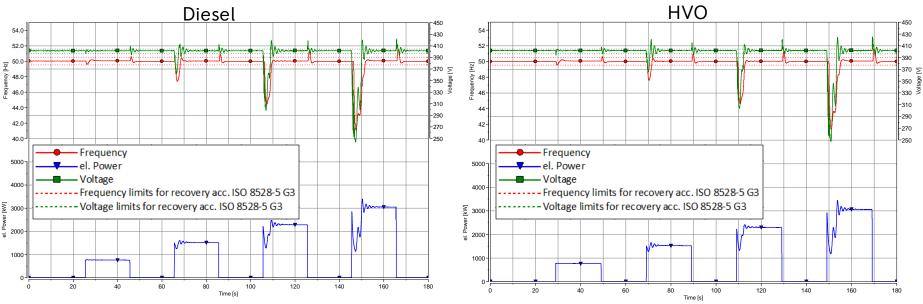
NOx emissions comparison between diesel and HVO


- Significant improvement of the emissions in low power range operations
 → less NOx emissions in part load testing
- small emission improvement in middle and high power ranges
- In average 8% lower NOx emissions
- Lower urea consumption expected

Reduction of harmful pollutants

Soot emissions 3000kWe genset

Diesel HVO


Comparison of soot emissions between diesel and HVO

- Significant reduction of soot emissions for the whole power range
- The range of soot reduction is 50-80%
- Black smoke is reduced

Same performance

- Measuring of the block loads (25%, 50%, 75%, 100%) engine: 20V 4000 G94F
- Comparison of the load steps between diesel and HVO no performance deviations regarding voltage, frequency and power
- Settling time is the same, transient behavior between the fuels is comparable
- Injection system has reserves, \rightarrow amout of injected fuel is very fast variable \rightarrow same dynamic loading performance

Long storage capabilities, positive chemical properties

Good storage properties
(only if 0% FAME-content),
similar to BO heating oil,
resistent against diesel
pest

cetane number

Biological degradable, less hazardous substance properties compared to E590 diesel

		Dieselfuel	HVO
Norm		EN590	EN15940
H-sentences (physical.)	pictogram		
H226 fluid and steam flammable		¥85.	Ne
H-senteces (health hazards)	pictogram		
H304 can be deadly if swallowed or <u>entered into</u> respiratory tract.		¥85.	¥95.
H315 <u>çauşes skin irritations</u> .		¥85	N.
H332 health hazardous by breathing in.		¥85	Ne.
H373 organs (blood, liver, thymus) can be damaged due to longer long exposure.		¥55	Ne
H351 presumably causes cancer.		¥85.	Ne
H-sentences_(environment)	pictogram		
H411 toxic for water organisms.		Vex	Ne

Hydrophobic fuel \rightarrow Better ability of ignition \rightarrow simplification of water better, more homogenic separation combustion due to higher

Significant reduction of greenhouse gas emissions (HVO)

- CO₂ from the atmosphere will be bound in the raw materials
- The raw materials are used to produce HVO
- HVO is used in the combustion while the engine is operating
- Due to the combustion CO₂ is emitted back into the atmosphere
- Greenhouse gases are bounded again in the raw materials
 - \rightarrow closed carbon cycle

Summary

Reduction of harmful pollutants: up to -80% soot (mg/m³) & up to -8% nitrous oxides (ppm NO_x)

Same performance: same maximum power, load acceptance and consumption

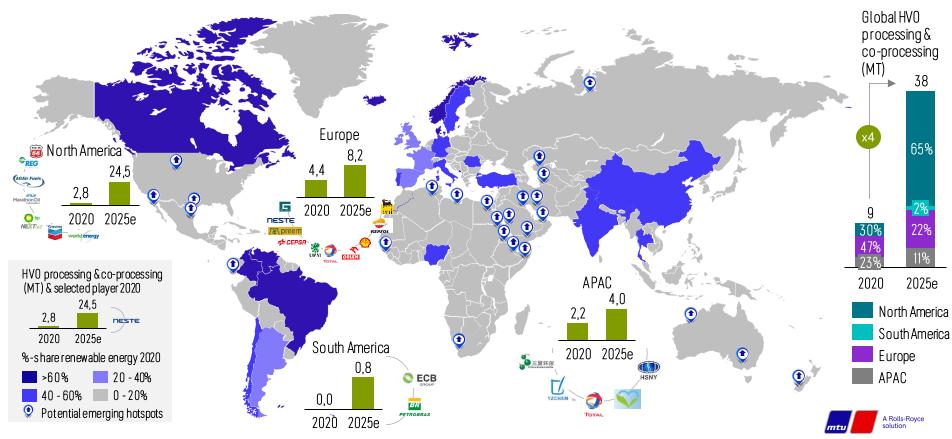
Simple drop-in fuel: no engine hard- or software adaptions necessary. Blends are possible.

No effect on service & maintenance intervals: Standard warranty conditions apply.

Long storage capability: High reliability under cold conditions and high oxidation stability (no FAME)

Positive chemical properties: higher cetane-number and better water separation (hydrophobic)

Approved for *mtu***GenDrive engines:** S4000 & S1600, 50Hz & 60Hz all emission optimizations & power ratings



Significant reduction of greenhouse gas emissions (CO2) with HVO: Improved ecological footprint & corporate image

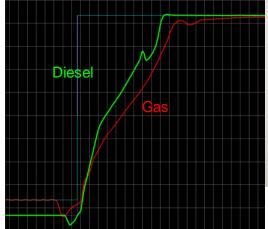
Global HVO processing and co-processing volumes will quadruple by 2025 vs 2020, production locations of renewable energies will serve as PtL hotspots beyond 2025

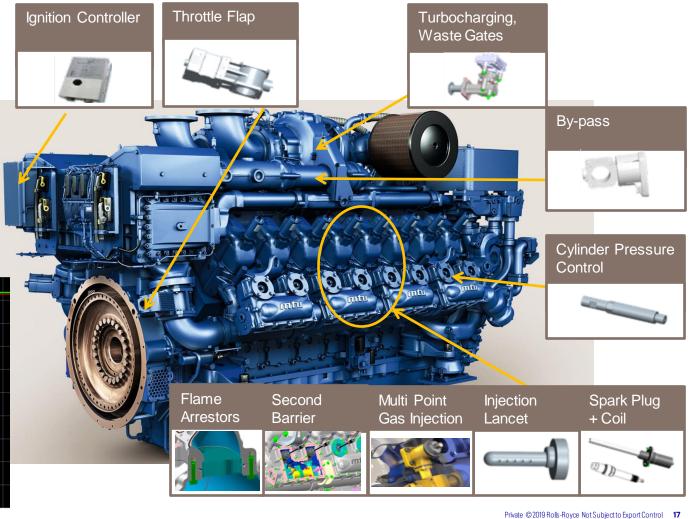
So urces: RRS Market Intelligence VSM (BloombergNEF, dataset Global Renewable Fuel Projects Tracker Oct. 2021, IEA Hydrogen Database); RRS Strategy & Business Development (Greenea Horizon 2030 Jan. 2021, S&P Global Platts Analytics, Fraunhofer IEE, IEA ORG)

Alternative – Renewable Fuel for Gas Engines

The transition from natural gas to Hydrogen Renew able

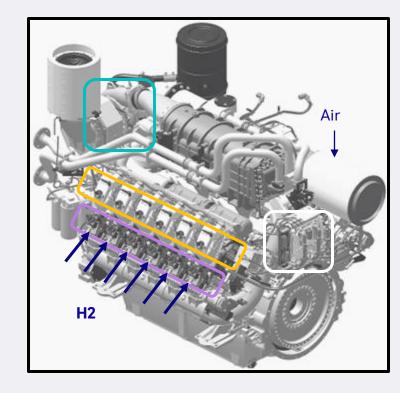
New mtu hydrogen solutions





Technical Concept,

key components and performance



100% H2 Engine Port Injection

Hydrogen Conversion Kit

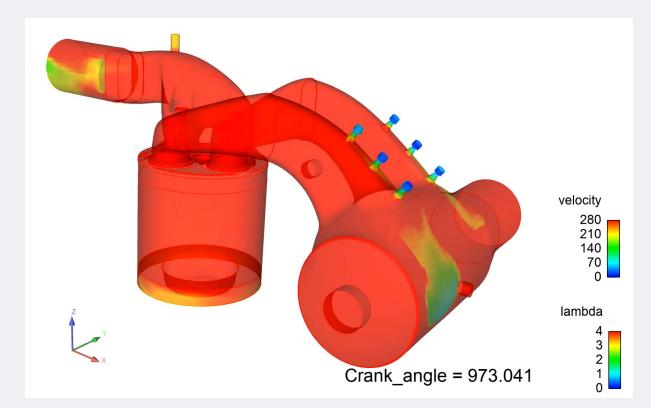
Turbocharging High air to gas ratio for Low NOx

Piston Design

Lower compression ratio

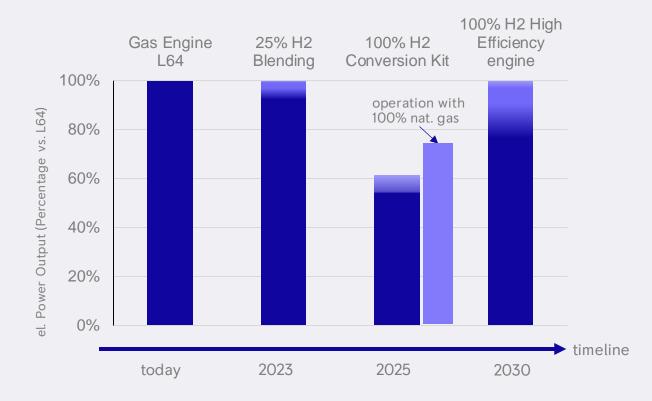
Multi Point Injection

State of the art of injection in Mobile Gas engine


Engine Control

Multiport Injection (incl. **Cylinder pressure monitoring**)

Hydrogen Engine 3D-CFD Combustion Simulation



The Simulation shows a very homogeneous air-fuel mixture and combustion

Target is to maximize the specific output and enable Bi-fuel operation

H2 engine development ... important milestones achieved

June '22: Delivery and installation of 170 kWe Hydrogen CHP system (6R 500/2G) at "Microgrid Validation Center" in FN ... week 29/'22 Commissioning

H2 engine development ... important milestones achieved

June '22: First fire 12V4000 Hydrogen at Testbed

Renewable Liquid Fuels

We have tested and approved the use of HVO and GtL fuels for defined *mtu* diesel engines.

Rolls-Royce Solutions.

Our Sustainability Product Roadmap

H₂ blended to Natural Gas

The blending of certain levels of hydrogen into the natural gas pipeline is seen as a valuable option during the transition to Carbon Free Gas.

100% H₂ Gas Engine Upgrading of mtu Gas Engines will be technically and economically possible.

H₂ Fuel Cell

Demonstration of new concepts for modular FC system integration will set the foundation for large scale power generation from PEM fuel cell technology.

Thank you for your attention!

