

Manure production and handling techniques on large-scale farms in the Baltic Sea Region

Erik Sindhöj, Allan Kaasik, Ksawery Kuligowski, Sigitas Lazauskas, Ilkka Sipilä, Kalvi Tamm, Kaspars Vartukapteinis, Lena Rodhe

erik.sindhoj@jti.se

JTI – Swedish Institute of Agricultural and Environmental Engineering

Contents Manure handling - techniques used on casestudy farms in BSR • Manure processing - examples of farm implemented technology • Management impacts on manure quality Conclusions & recommendations

Manure handling chain

Plus farm examples of manure processing

5 farms per country

2 dairy

2 pig

1 poultry

X 6 countries

10 extra farms

Livestock density

Dairy n=13, pigs n=12, poultry n=4. Error bars = 1 SD.

*2 poultry farms do not have land for spreading manure so livestock density could not be calculated

Manure handling systems

	Total LU	Solid manure (%)	Slurry (%)
Dairy*	6 736	37.6 60	62.4 40
Pigs	66 169	0.2 80	99.8 20
Poultry	36 769	86.7 100	13.3 0

^{*} Total herd including heifers and calves

% of total manure amounts in EE, FI, LT, LV, PL, SE from Sari Luostarinen (ed.)2013

Mucking out frequency

Livestock type	Daily	1-2 times a week	Every 2- 3 weeks	Once per batch
Dairy	11	5	0	0
Pigs	10	1	2	0
Poultry	0	3	0	3
Total	21	9	2	3

Manure production (ex-storage)

Dairy n=13, pigs n=12, poultry n=6. Error bars = 1 SD.

Manure processing on 29% of farms

Technology	Number of farms	Livestock type	Countries
Anaerobic digestion	5 + 2*	Dairy, pig (dairy, poultry)	Sweden, Finland, Latvia, Poland
Mechanical separation	2	Dairy, pig	Lithuania, Poland

^{*(}exported manure to biogas plant)

Slurry storage capacity

Types of storage for slurry and solid manure

Use of covers on manure storages

Volume of slurry spread with various techniques

Application rates on different crops

	tonnes/ha										
Crop	2.5*	5*	10*	15	20	25	30	40	50	60 70 80	90 NI
Grassland					XX	xxxx	XXXX	xxx	х	х	XX
Spring cereal	Х	Х	XX	X	XX	XXXX	XXX	х		xx	xx
Winter cereal	Х	X	XX		Х		Х		xxx	x	
Rapeseed	X				XXX	X		l	 	x	
Maize			X		Х	X		х	xxx	!!!	1
Sugar beet						XX					
Green manure					Х						
Peas	X		X								
Crop unknown			X				xxx	XX			
Total	4	2	7	1	11	12	11	7	7	5	4

^{*}poultry manure

Application time

Crop	April	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
Grassland	xxxx	Х	xxxx	х	Х	xxxxxx			xx
Spring cereal	xxxxxxx	XXXXXXX							- 1
Winter cereal	XXXX				XXXX	XXXXXX			į
Rapeseed	XXX	Х			X	Х			į
Maize	x	XXX							-
Sugar beet		x						!!!	- 1
Green manure		Х						•••	İ
Before									i i
ploughing						!	Х		- !
Peas	X	X							i
Crops unknown		xxxx	x	X	x	x	XXXX		
Total	21	20	5	2	7	14	5		2

Percentage manure exported off-farm

Bottlenecks for utilizing manure

4 types of barriers

- 1. Cost / economic factors
- 2. Technological limitations
- 3. Lack of knowledge
- 4. Regulations or lack of support mechanisms for adopting BAT

Concentration technologies

Pellon **Biotain** Storage for solid Strinning fraction UNDER DEVELOPMENT Precipitation tanks **NOT YET COMMERCIALLY AVAILABLE Biosolids** screw conveyor Solid-liquid separation Fine filter Coarse filter Aerobic biological treatment Roller press

Mechanical separation

Drum composting

ESCAB

Acidification

Slurry cooling

Pellon

Anaerobic digestion

Management factors that impact manure

Management factors that impact manure Feeding - feed to ex-animal

*calculated

Management factors that impact manure Feeding - ex-animal to ex-housing

*calculated

Management factors that impact manure Feeding - ex-animal to ex-storage

*calculated

Management factors that impact manure Additives – Phosphorus reduction

Management factors that impact manure Additives – on dairy farms

	DM				TN			Р		
	Ex-	Ex-	Ex-	Ex-	Ex-	Ex-	Ex-	Ex-	Ex-	
	anımaı	housing	storage	anımaı	housing	storage	anımaı	housing	storage	
Average	100	59	60	100	52	59	100	52	61	
Max		83	80		75	78		86	108	
Min		41	35		24	41		32	40	

Management factors that impact manure Measured additions

SE Farm 3 - Pigs 1821 t/yr dilution

SE Farm 1 – Dairy 2961 t/yr dilution

Conclusions

- Most large-scale farms handled manure as slurry
- Large variation in manure produced per LU even for similar livestock types
- Examples of environmentally friendly technology found in all countries
- Manure handling after storage was least welldescribed part of handling chain
- Cost greatest barrier for implementing innovative handling and processing technology

Recommendations

- Increase storage capacity
- Increase the use of environmentally friendly technology to reduce ammonium emissions from storage and during spreading
- Decrease dilution of slurry as much as possible
- Spreading technology must have high precision
 - Correct dose in the right place at the right time
 - When needed by plants
 - Application rates based on actual nutrient content
 - Site specific conditions
 - Spreading evenness

