HIV cure research: current strategies and challenges

Sharon R Lewin
Director, Doherty Institute for Infection and Immunity,
The University of Melbourne,
Consultant physician, The Alfred, Melbourne, Australia

Australasian Society for HIV Medicine; September 16-18th, 2015; Brisbane, Australia,

Barriers to cure

- Latently infected T-cells
- Residual viral replication
- Anatomical reservoirs

Eliminating latently infected cells

- Treatment during acute infection
- “Activating” latent infection
- Boosting HIV-specific immunity
- Allogeneic transplantation
- Reducing homeostatic proliferation(?)

Sustained remission off ART is rare but achievable

Current strategies to eliminate latently infected cells

Early ART limits persistence of HIV reservoir in all CD4+ T cell subsets

After 2 years of ART, integrated HIV DNA is undetectable in all subsets of Fiebig I individuals.

Nicolas Chomont and Jintanat Ananworanich
Post treatment control is rare following ART in acute infection

<table>
<thead>
<tr>
<th>Published studies</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optiprim</td>
<td>90</td>
</tr>
<tr>
<td>(Cheret A. Lancet ID 2015)</td>
<td></td>
</tr>
<tr>
<td>Spartac</td>
<td>165</td>
</tr>
<tr>
<td>(Stehr W, PLoS One 2013)</td>
<td></td>
</tr>
<tr>
<td>VISCONTI</td>
<td>14</td>
</tr>
<tr>
<td>(See-Corin A, PLoS Pathogens 2013)</td>
<td></td>
</tr>
<tr>
<td>Swiss HIV Cohort Study</td>
<td>32</td>
</tr>
<tr>
<td>(Ganella S, Antimoni Therapy 2011)</td>
<td></td>
</tr>
<tr>
<td>Primo-SHM</td>
<td>173</td>
</tr>
<tr>
<td>(Gieren ML, PLoS Medicine 2012)</td>
<td></td>
</tr>
<tr>
<td>ANRS C06 PRIMO</td>
<td>164</td>
</tr>
<tr>
<td>(Sogayar C, Antimoni Ther 2012)</td>
<td></td>
</tr>
<tr>
<td>CASCADE</td>
<td>259</td>
</tr>
<tr>
<td>(Lodi S, Arch Intern Med 2012)</td>
<td></td>
</tr>
</tbody>
</table>

Ananworanich, Keystone Symposium on HIV cure, April 2015

We need a biomarker that can predict “cure” or “remission”

- HIV DNA: SPARTAC, Swiss HIV Cohort Study
- CA-US HIV RNA: ACTG ATI Cohort Study
- PD1 expression on CD4 and CD8 (prior to ART): SPARTAC

Activating latent infection

Latency reversing agents: many now in clinical trials

Epigenetic modifiers
- HDACi
 - Methyltransferase inhibitor
 - Bromodomain inh

- TLR agonists
 - TLR7 (GS9620)
 - TLR3 (polyICLC)
 - TLR9
 - TLR4

Activators of NF-kB
- Prostratin
- Bryostatin
- Inogenol B / PEP 005
- SMAC mimetics

Other
- Disulfiram
- Quinolines
- IL-15

Adverse effects on HIV RNA splicing following activation with potent HDACi

<table>
<thead>
<tr>
<th>HDACi</th>
<th>Clinical development</th>
<th>HIV latency</th>
<th>US HIV RNA</th>
<th>Plasma RNA</th>
<th>HIV DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorinostat</td>
<td>Licensed (2006)</td>
<td>CTCL</td>
<td>Single dose1</td>
<td>Intermittent2</td>
<td>Continuous3</td>
</tr>
</tbody>
</table>

CTCL – cutaneous T-cell lymphoma

HDACi have adverse effects on HIV-specific immunity (in vitro) and host gene changes

Changes over time for each LRA: Kruskal-Wallis; *** p ≤ 0.001; **** p ≤ 0.0001

Jones et al., PLoS Path 2014; Elliott et al., PLoS Path 2014
TLR7 agonist activates HIV latency in SIV infected macaques

Plasma SIV RNA

CD8 T cell activation

Human clinical trial of a similar TLR7 agonist currently enrolling

Whitney et al., CROI 2015, Seattle 2015

Disulfiram dose escalation study to activate HIV latency

Disulfiram dose escalation study to activate HIV latency

Elliott JH et al., CROI, Seattle 2015. Abstract 428LB

High dose disulfiram increases cell associated and plasma HIV RNA

A modest (2 fold) but significant increase in cell associated and plasma HIV RNA with disulfiram 2g/day

Elliott JH et al., CROI, Seattle 2015. Abstract 428LB

Activation of non-canonical NFKB pathways: synergism with HDACi

Activation of non-canonical NFKB pathways: synergism with HDACi

Pache et al., Cell Host Microbe 2015

Boosting HIV-specific immunity

“shock (tickle) and kill”

“reduce and control”

Latent infection

“shock”

HIV DNA

HIV US RNA

“kill”

HIV proteins

HIV virions

Cell death

Therapeutic vaccination: bNABs and CMV vaccine

Therapeutic vaccination: bNABs and CMV vaccine

Combination cure studies

Romedepsin + Vacc

Phase 1 human studies to start in 2016

Phase 1 human studies to start in 2016

Romedepsin + 3BNC117

Phase 1 human studies to start in 2016

Romedepsin + 3BNC117

Romedepsin + bNABs

Latent infection

“shock”

HIV DNA

HIV US RNA

“kill”

HIV proteins

HIV virions

Cell death

“reduce and control”

Phase 1 human studies to start in 2016

Romedepsin + bNABs

Phase 1 human studies to start in 2016

Romedepsin + Vacc

Phase 1 human studies to start in 2016

Romedepsin + 3BNC117
B cell follicles in lymph node might be a barrier

Exhausted T cell

CTLA-4

Blockine immune checkpoint markers to boost immune function

<table>
<thead>
<tr>
<th>Drug</th>
<th>Company</th>
<th>Target</th>
<th>Registration</th>
<th>HIV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nivolumab</td>
<td>BMS</td>
<td>PD-1</td>
<td>FDA approved: melanoma</td>
<td>no</td>
</tr>
<tr>
<td>Pembrolizumab</td>
<td>Merck</td>
<td>PD-1</td>
<td>FDA approved: melanoma and lung cancer</td>
<td>no</td>
</tr>
<tr>
<td>BMS-932059</td>
<td>BMS</td>
<td>PD-L1</td>
<td>Phase III: solid organ malignancy</td>
<td>On hold</td>
</tr>
<tr>
<td>Ipilimumab</td>
<td>BMS</td>
<td>CTLA-4</td>
<td>FDA approved: melanoma</td>
<td>Case reports</td>
</tr>
</tbody>
</table>

Wightman et al., AIDS 2015;29(4):504-6

ALT-803 (IL15 superagonist) acts as an LRA and boosts CTL

Ex vivo model using 500 million resting CD4+ T-cells (6 billion PBMC) from patients on ART co-cultured with autologous CTL

Brad Jones et al., Keystone Symposium on HIV Cure, Boston, MA, April 2015

Combination immune checkpoint blockade: greater efficacy in melanoma

Nivolumab plus Ipilimumab in Advanced Melanoma

Nivolumab and Ipilimumab versus Ipilimumab in Untreated Melanoma

Role in HIV infection?

Trials update:
- Several Phase III trials ongoing modifying T cells (NCT01543152, NCT02256645, NCT02385941)
- First HSC trial anticipated opening July 2015

Gene therapy: ZFNs to knockout CCR5

Paula Cannon

Targeted nucleases: guide DNA break

Trials update:
- Several Phase III trials ongoing modifying T cells (NCT01543152, NCT02256645, NCT02385941)
- First HSC trial anticipated opening July 2015

Paula Cannon
Targeted nucleases allow precise gene editing or site-specific gene addition

- Beyond gene (CCR5) knockout, this opens up the possibility of editing host genes such as restriction factors, or inserting anti-HIV genes at a specific site

Paula Cannon

Conclusion

- Several interventions have been shown to significantly reduce the frequency of latently infected cells including very early ART and transplantation – but this rarely translates into prolonged remission
- Activation of latent HIV possible in vivo with HDACi, disulfiram and TLR7 agonists but remains a need for more potent, less toxic and more specific LRAs
- Combination activation and/or enhanced immunity through vaccination or immune check point inhibition currently being evaluated
- “Knock out” or “knock in” gene therapy may play a role

Acknowledgements

Doherty Institute, Uni Melb
Paul Cannon
Suha Saleh
Jenny Anderson
Fiona White
Amanda Escalante
Christine Chang
Kang Chen
Surekha Tennakoon
Hai Lu
Ashanti Dantanarayana
Renée Van der Slui
Vanessa Evans
Tara Mora
Dorothea Pursall
Julien Baul
Jennifer Audsley
The Alfred Hospital
Julian Elliott
Jowane McEwan
Jennifer Wip
Jade Roney
Michaelb Bagdas

The Burnet Institute
Melissa Belich
Lachlan Gray
Tim Spelman
NCI Frederick
Jeff Ulshon
Robert Grist
Mike Fralic
UCSF, San Francisco
Karey Cheong

GFP insertion at CCR5 in HSC

Ctrl. CCR5 ZFN mRNA + AAV-GFP donor

29%

GFP