

Hepatitis C – growing disease burden

Razavi H, et al. J Viral Hepat 2014; 21 Suppl 1: 34-59.

_

Recurrent Hepatitis C: Antiviral Strategies

Treating decompensated cirrhosis Reduced efficacy especially in CTP C

◆ SOLAR 1/2 Studies of HARVONI + RBV for 12/24 weeks in 247 CTP B/C GT 1 Patients

Analysis excluded 13 patients transplanted prior to posttreatment Week (FU) 12 with HCV RNA <LLOQ at last measurement prior to transplant, and 3 pretransplant patients who were CPT A at baseline. Error bars represent 95% confidence intervals (Cls).

Gane E, et al. APASL 2016

Treating decompensated cirrhosis Reduced efficacy especially in GT 3

- ■UK EAP for 409 CTP B/C pts 12 wks
 - LDV/SOF±RBV or DCV/SOF±RBV for 12 weeks

Foster G et al. J Hepatol 2016

Treating decompensated cirrhosis Is it worth it?

SVR is associated with rescue from death/transplant

Treating decompensated cirrhosis Do we rescue patients?

◆ DAAs improve liver synthetic function

HARVONI + RBV fir 12 weeks in 247 CTP B/C patients

Gane E, et al. AASLD 2015 Poster #1049

Treating decompensated cirrhosis Is there a point of "no return"

■ Baseline MELD but NOT ∆ MELD predicts outcome

Adverse events at 15 months post-SVR

Treating decompensated cirrhosis Is there a point of "no return"

- 103 patients listed for decompensated HCV
- SOF/RBV, SOF/LDV, SOF/DCV
- 34 deactivated

elli L, et al. EASL 2016, Barcelona. #PS036

What is the Point of No Return?

HARM outweighs BENEFIT, if high MELD

- Low efficacy: 60% in GT 3
- Relapse with NS5A RASs retreatment?
- Low safety of RBV (+ SOF? If renal dysfn)
- Even if achieve SVR, risk of MELD purgatory
 - lose priority on list and die

WAIT AND TREAT AFTER TRANSPLANT

Wait and treat after transplant SVR rates are excellent after transplant

Charlton M. Gastroenterology 2015;149:649-59 Kwo P. N Engl J Med. 2014;371:2375-82 Pungpapong S. Hepatol 2015; 61:1880-6. Houssel-Derby P, et al. EASL 2016, Barcelona. #PS018 Coilly A, et al. EASL 2015. Abstract G15

11

What is the Point of No Return?

ILTS CONSENSUS RECOMMENDATION 2:

 HCV-infected patients with advanced decompensated cirrhosis with MELD >25 should not undergo antiviral therapy

Strength of recommendation: Conditional

Quality of Data: Very Low

Acute Hepatitis C: Treat now or wait?

NO

Peg-IFN ± RBV

- Poor tolerability
- Difficult to monitor
- 12-24 weeks duration
- Poor adherence
- High risk of reinfection
- Wait until chronic
 - DAAs ⇒95% SVR
 - Stable harm reduction

YES

All DAA therapy

- Excellent tolerability
- No need to monitor
- Shorter duration?
- Adherence?
- Low risk of reinfection
- Prevent transmission
 - Public Health benefit

Ultrashort duration DAA therapy for acute HepC

DARE-C II, HepNet, SLAM-C

- 3 studies in acute HepC
 - Only one was all genotypes (DARE-C)
 - Different definitions (acute vs. recent infection)

¹Martinello M, et al. Hepatology 2016; Sept 17 (on line)

²Basu P, et al. EASL 2016, Barcelona. #SAT-234

³Deterding K, et al. EASL 2016, Barcelona. #LB08

What is the Risk of Reinfection?

Meta-analysis of 61 studies to determine reinfection

- 7969 Low-risk patients → 1% HCV recurrence at 5 years
- 771 High-risk IDU/prisoners → 11% HCV recurrence at 5 years
- 309 HIV coinfected patients → 15% HCV recurrence at 5 years

Active IDU, prisoners and HIV+ patients should be monitored for reinfection

Simmons B et al, Clin ID March 2016

The patient who has failed HARVONI, DAC/SOF or VIEKIRA PAK

Treat now or wait?

Phase II LDV/SOF ± RBV for 12-24 weeks in GT 1

Patients who have failed prior SOF therapy

Phase II SOF/VEL+RBV for 24 weeks in GT 1-6

Patients who have failed prior DAA therapy

19

Phase II SOF/VEL/VOX for 12 weeks in GT 1–6

Patients who have failed prior DAA therapy

Phase II Data on GLE/PIB for 12 weeks in GT 1–6

Patients who have failed prior DAA therapy

21

The Patient with HBV coinfection

Treat HBV as well to prevent HBV Flare?

HARVONI for 12 weeks in GT 1 with HBV coinfection LEPTON Phase II Pilot Study

All HBsAg+, HBV DNA <3 log IU/mL

Mean and Individual HBV DNA Profiles

HBV/HCV Co-infection

Mean and Individual ALT Profiles

HBV/HCV Co-infection

Treatment of HCV in Renal Impairment What drugs are safe?

DAA Class	Name	AUC ₂₄ if eGFR <30 ml/min
NS3 Protease inhibitor	Paritaprevir ³	1.5
	Grazoprevir ⁴	1.4
	ABT-493	1
NS5A inhibitor	Daclatasvir ⁵	1
	Ledipasvir ⁶	1
	Ombitasvir ³	1
	Elbasvir	1.5
	ABT-530	1
Non-NUC NS5B	Dasabuvir ³	1.5
NUC NS5B Inhibitor	Sofosbuvir ¹	6x
	Ribavirin	>10x

VIEKIRA PAK Phase II Trials in Renal Failure RUBY-1 Study

■ 20 GT1 patients with eGFR <30ml/min, include HD, no cirrhosis

- Only safety issue is RBV
- RUBY-II removes RBV in all patients and includes cirrhotics

28

Grazoprevir/Elbasvir (ZEPATIER) in HCV GT 1

C·SURFER

C-SURFER: Efficacy in ESRD

235 GT1 patients with eGFR <30ml/min, include HD, cirrhosis

(ii) Safety

GZR/EBR	Placebo
34%	35%
14%	17%
0%	4%
24%	27%
0	1
1	3
	34% 14% 0% 24%

Sofosbuvir in Renal Impairment

HCV TARGET Real World Study

Sofosbuvir in Renal Impairment

Open-label study in HCV pts with GFR <30

Martin P et al. AASLD 2015, San Francisco. #1128 Gane E, et al. AASLD 2014, Boston. #966

QD: once-daily; RBV: ribavirin; SOF: sofosbuvir

Sofosbuvir in Renal Impairment

Open-label study in HCV pts with GFR <30

On treatment suppression

GFR <30ml/min (n=10) GFR >60ml/min (n=114)* GFR >60ml/min (n=114)* GFR >60ml/min (n=114)* Week

SVR12

- AEs all due to RBV toxicity. NO evidence of SOF toxicity
- eGFR improved during treatment (26⇒36 mL/min)
- Next group is LDV/SOF for 12 weeks without RBV (GT 1)

Martin P et al. AASLD 2015, San Francisco. #1128 Gane E, et al. AASLD 2014, Boston. #966