

HCV diagnostics and non-invasive liver disease assessments: what are the current tools in the toolbox and where to from here?

Dr Karine Lacombe, M.D., PhD INSERM UMR-S1136, IPLESP SMIT St Antoine, AP-HP Université Pierre et Marie Curie, Paris VI

Assessment of HCV disease 2' ide the continuum of

nosis

isthe

ctive dia

ring

cools

Liver fibrosis assessment tools

atingthe

What lies in the tool box?

Tools for the virus (1)

• HCV Elisa tests¹:

- Standard of care for screening for the presence of HCV Ab
- Immunoenzymatic assays, 3rd generation
- Serological window: approx. 60 days
- May be negative in highly immunosuppressed patients

• Combo anti-HCV Ab / HCV Ag assay²

- May reduce the serological window by 20 days
- Less sensitive than 3rd generation Elisa Tests for Ab and detect HCV later than HCV-RNA in acute HCV settings

¹Chevaliez S. Clin Microbiol Infect 2011.

Tools for the virus (2)

• HCV rapid tests

Performed on cravicular liquid, full blood, plasma¹

Type of tests	Type of liquid	Se [95%Cl]	Sp [95%Cl]
Oraquick [®] HCV	Cravicular	97,8%	100%
(Orasure		[95,6 - 98,9]	[95,6 - 98,9]
technologies, USA)	Capillary full	99,1%	100%
	blood	[97,4 - 99,8]	[98,0 - 100]
Toyo [®] HCV (Turklab,	Capillary full	95,9%	98,3%
Turquie)	blood	[93,1 - 97,8]	[95,1 - 99,6]
Labmen HCV [®]	Capillary full	63,1%	100%
(Turklab, Turquie)	blood	[55,1- 70,6]	[95,2 - 100]

- Slight decrease in Se when used on cravicular liquid²
- Controversial effect of HIV on test performance^{3,4}

¹French National Guidelines on HCV Screening, April 2014. ²Shivkumar, Ann Intern Med 2012. ³Smith, J Infect Dis 2011. ⁴Larrat, J Clin Virol 2012

Tools for the virus (3)

- HCV-RNA quantification¹
 - two molecular biology-based techniques: target amplification (PCR) and signal amplification (branched DNA assay), with an increase in sensitivity in real time PCR
 - Used to confirm chronic hepatitis C
 - In the setting of acute HCV, shortest serological window:
 1 3 weeks

Tools for the virus (4)

HCV genotyping

- Based on direct sequencing (population sequencing) that provides the full sequence of the analysed fragment, or reverse hybridization that identifies specific nucleotides or motifs at given positions
- 7 genotypes identified with different susceptibilities to DAAs

Tools for the liver (1)

• Liver biopsy

- Considered as « gold standard » for liver fibrosis evaluation for years
- Very valuable in HIV patients (NASH, OH, ARV toxicities, etc.)
- Numerous drawbacks: cost, life-threatening complications, sample variability

Tools for the liver (2)

Biochemical scores

- Based on the combination of biochemical markers with a equation predicting the risk of fibrosis
- Influenced by etiology of fibrosis (different thresholds)

	Bili	ggt	Hapto	a2M	АроА	ALAT	Hyalu	Alb	ASAT	Chol	Pqt	TP	Urée	Age	Sexe	IMO
Fibrotest®	х	x	x	х	x									x	x	
SHASTA							x	x	x							
Hepascore	х	x		x			x							x	x	
Zeng		x		х			X							x		
Forns		x								x	x			x		
Fibrometre®				х			x		x		x	х	X	x		
Fib-4						х			x		х			х		
AST/ALT						x			x							
Hyalu							x					-				
APRI									x		х					
Hui	х							x			х					х

- Best tests combining markers of extracellular matrix degradation (Fibrotest, fibrometer)
- Simple tests such as APRI or Fib4 exhibit very good performance in diagnosing advanced fibrosis

Tools for the liver (3)

- Transient elastometry
 - Measurement of liver stiffness
 (kPa) with a probe
 - Median and IQR with at least 10 valid measures
 - Must be performed after 12 hour-fasting

Tools for the liver (4)

• Combining non invasive markers for the diagnosis of advanced fibrosis

Boursier, Hepatology 2012

Tools for follow-up under treatment

	Before Rx	Rx initiation	W4	W8	EOT	SVR12
FBC	Х	Х	Х	Х	Х	
LE	Х	Х	Х	Х	Х	
Renal Fct	Х	Х	Х	Х	Х	
APRI/TE		Х				
HCV-RNA	Х	Х			Х	Х
Genotype	Х					
Thyroide Fct		Х			Х	

WHO HCV care and management Guidelines, 2014

How should innovation be a game changer in diagnosis of HCV infection and follow-up of HCV treatment ?

→ Transforming a multiple-step procedure into a two step-procedure

HCV Core Ag quantification

HCV core Ag quantification

- Decrease of serological window compared to ELISA, threshold for HCV-RNA detection = 1000UI/mL¹
- Excellent Se and Sp which makes it a reliable tool for mass screening for acute HCV²
- Decrease in Se when performed on DBS³
- To date, only one marketed test: Abbott ARCHITECT platform

 But POC device being developed (DAKTARI): eliminates sample preparation through the use of a technology known as "microfluidic immunochromatography", which isolates cells (or viruses) : the only user step is to apply a drop of whole blood to the cartridge.

¹Chevaliez, J Clin Virol 2014. ²Vanhommerig, EASL 2014. Chevaliez, J Infect Dis 2015

Agence autonome de l'Inserm

ANRS12336: Performance of HCV Core Ag as a screening and follow-up tool

- Ancillary study of TAC trial (efficacy and tolerance of SOF + RBV or SOF + LDV in genotype 1, 2 or 4 HCV infection in Côte d'Ivoire, Cameroon and Senegal)
- Primary objective: performance of HCV Core Ag (Architect Abbott Diagnostics) in HCV screening and follow-up under DAA- based treatment
- Secondary objectives: influence of HBV and HIV coinfection of HCV Core Ag performance

Population

1037 serum samples from the Pasteur Center of Cameroon in Yaounde

- HCV+:
 - HCV antibody (HCV Ab) positive serology
 - Quantifiable HCV RNA
- HCV-:
 - HCV Ab negative serology
 - OR undetectable HCV RNA
- HIV status known
- HBV status known

Results: AgC overall performance

Results: overall performance of AgC

Table Performance of the AgC quantification by infection group

	n	Se [IC97.5%]	Spe [IC97.5%]	VPP*	VPN*	AUC [IC95%]	LR+	LR-
Mono	824	95.7 [93.2 ; 97.5]	99.7 [98.1 ; 100]	98.1	99.3	0.99 [0.98-1.0]	319	0.043
HIV	78	100 [85.0 ; 100]	88.2 [74.3 ; 96.2]	57.6	100	0.99 [0.97-1.0]	847	0
HBV	107	96.4 [79.2 ; 99.9]	96.2 [88.1 ; 99.4]	80.2	99.4	0.98 [0.95-1.0]	25	0.037

➔ Next step: HCV core Ag as a tool for follow-up of patients under treatment

*Estimated HCV prevalence in Cameroon: 13,8%

HCV RNA quantification

- Point of care (POC) platforms for HCV-RNA assays
 - HCV RNA quantitative assay
 - Alere Q (Alere Inc.)
 - EOSCAPE-HCV rapid RNA assay (Wave 80 Biosciences)
 - Truelab Uno real time Micro PCR system (Molbio Diagnostics Pvt Ltd)
 - GeneXpert (Cepheid)
 - RT CPA HCV Viral Load Test (Ustar B
 - HCV RNA qualitative assays
 - Gendrive (Epistem)
 - PanNAT (Micronics Inc.)

HCV Genotyping

• POC molecular devices under development, i.e Gendrive (EPISTEM)

Dried Blood Spots

- Used to collect venous blood specimens in setting where syringes, tubes, centrifuges and skilled labor are not available
- Recently assessed for a wide range of HCV diagnostic tools¹:

Variable	Specificity, % (95% CI)	Sensitivity, % (95% CI)	PPV	NPV
Anti-HCV antibody detection	98.2 (94.9–99.6)	99.1 (97.4–99.8)	99.1	98.2
HCV core antigen detection	100 (97.8–100)	64.1 (58.5–69.3)	100	64.7
HCV RNA detection				
CAP/CTM	100 (97.8–100)	97.1 (94.7–98.5)	100	95.0
m2000	100 (97.8–100)	98.1 (95.9–99.1)	100	96.6
HCV genotype determination	NA	72.3 (67.0–76.9)	100	NA

Results of serum analysis are the references.

Abbreviations: CAP/CTM: Cobas Ampliprep/Cobas TaqMan HCV assay, version 2; CI, confidence interval; m2000, m2000 platform; NA, not applicable; NPV, negative predictive value; PPV, positive predictive value.

Soulier, J Infect Dis, 2015

The use of APRI for identifying cirrhosis

		APRI (low cut-off)	APRI (high cut- off)	FIB4 (low cut-off)	FIB4 (high cut-off)	Transient elastography (Fibroscan)
Significant fibrosis (METAVIR	Sensitivity (95% CI)	82 (77–86)	39 (32–47)	89 (79–95)	59 (43–73)	79 (74–84)
≥F2)	Specificity (95% CI)	57 (49–65)	92 (89–94)	42 (25–61)	74 (56–87)	83 (77–88)
Cirrhosis (METAVIR F4)	Sensitivity (95% CI)	77 (73–81)	48 (41–56)	-	-	89 (84-92)
	Specificity (95% CI)	78 (74–81)	94 (91–95)	-	-	91 (89–93)

APRI aminotransferase/platelet ratio index; kPa kilopascal

Source: WHO HCV Guidelines, April 2014

What would the ideal screening and follow-up algorithm?

Evaluation of a simplified screening and followup strategy in a real-life setting

- Nested in two studies based in Western Africa:
 - TAC (Treatment Africa Hepatitis C) ANRS12311
 - Clinical trial assessing the efficacy and tolerance of a 12 weekcourse of SOF+RBV or SOF+LDV in 120 GT1,2 or 4 patients living in Cameroon, Côte d'Ivoire and Senegal
 - Of whom 20 are DUs living in Dakar on OST provided at CEPIAD¹
 - CODISEN (Cohort of Drug Injectors living in Senegal) ANRS12334
 - Cohort of 500 individuals seeking care at the CEPIAD OST center (HCV prevalence: 23,3%, 38,3% in injectors)
 - Access to TAC trial and MRKHEPSEN (Gazoprevir+ elbasvir for 12weeks in GT1 and 4)

¹Lepretre, JIAS 2015

Acknowlegments

- TAC clinical research team and patients
- CODISEN research teams and patients
- ANRS, Expertise France
- Gilead, MSD, Mylan