

Is it the future we want for the Baltic?

Anoxic, "dead" bottoms

(Seifert and Kayser 1995)

What is good ecosystem health of the Baltic Sea?

 The ecosystem approach is a strategy for the integrated management of land, water and living resources that promotes conservation and sustainable use in an equitable way.

(UN Convention on Biodiversity)

 A marine environment, with diverse biological components functioning in balance, resulting in a good environmental/ecological status and supporting a wide range of sustainable human economic and social activities

(HELCOM Baltic Sea Action Plan)

What is current Ecosystem Health of the Baltic Sea?

 An overview of the ecosystem health of the Baltic Sea in 2003-2007, including status, pressures and economic analysis

A baseline for assessing the effectiveness of the implementation of the measures of the HELCOM BSAP

HELCOM Baltic Sea Action Plan → 2021

Nutrients on natural levels

Natural levels of oxygen and algal blooms

Viable populations of species<

Natural marine and coastal landscapes

Thriving and balanced communities

distribution of fauna and flora

Natural

EUTROPHICATION

HELCOM Baltic Sea Action Plan

łelsinki Commission

BIODIVERSITY

MARITIME TRAFFIC

No alien species

Minimum sewage and air pollution

No illegal or accidental discharges

HAZARDOUS SUBSTANCES

Hazardous substances on natural levels

All fish healthy to eat

Healthy wildlife

Common goal: Baltic unaffected by eutrophication

Ecological objective for eutrophication - Clear water

BSAP nutrient reduction targets

Baltic Sea Sub-basin	Maximum Allowable Inputs (2013)		Reference inputs 1997-2003		Needed reductions	
	TN	TP	TN	TP	TN	TP
	tons	tons	tons	tons	tons	tons
Kattegat	74 000	1 687	78 761	1 687	4 761	0
Danish Straits	65 998	1 601	65 998	1 601	0	0
Baltic Proper	325 000	7 360	423 921	18 320	98 921	10 960
Bothnian Sea	79 372	2 773	79 372	2 773	0	0
Bothnian Bay	57 622	2 675	57 622	2 675	0	0
Gulf of Riga	88 417	2 020	88 417	2 328	0	308
Gulf of Finland	101 800	3 600	116 252	7 509	14 452	3 909
Baltic Sea – revised						
figures (2013)	792 209	21 716	910 344	36 894	118 134	15 178

Total water- and airborne loads, 1994-2010

Baltic-wide Pollution Load Compilation: Sources of <u>waterborne</u> P and N (2006)

Contributions of selected emission sectors from individual HELCOM countries to depositions of nitrogen to the entire Baltic Sea (2000)

- combustion
- **transportation**
- agriculture

Contributor

Baltic Sea Action Plan: Eutrophication

1. Point sources / Sewage

- Stricter municipal wastewater treatment
- Enhancement of wastewater collection from single houses and in scattered areas
- introduction of phosphorus-free detergents
- sewage from shipping

2. Diffuse sources / Agriculture

- Renewed set of requirements Annex to the Convention
- A palette of agri-environmental measures to support
- compliance with requirements for large agri-industries
- Environmentally sound manure management
- Focus on areas that are critical for nutrient pollution
- Policy dialogue between agriculture and environment authorities

3. Airborne deposition

Reduction of N emissions from shipping and other sources

Harvesting ideas and solutions

BALTIC CØMPASS

So, where we are with reaching the targets?

Basins/ inputs in tons	Required re with new M (2013)		Reductions since reference period		
	Total N	Total P	Total N	Total P	
Bothnian Bay	0	0	4 023	108	
Bothnian Sea	0	0	8 611	306	
Baltic Proper	98 921	10 960	36 928	2 435	
Gulf of Finland	14 452	3 909	5 457	1 000	
Gulf of Riga	0	308	2 974	-381	
Danish Straits	0	0	10 417	108	
Kattegat	4 762	0	12 528	175	
Baltic total	118 136	15 177	80 937	3 751	

10% reduction in total phosphorus inputs
9% reduction in total nitrogen inputs
BUT

24% of phosphorus target for sub-basins46% of nitrogen target for sub-basins

When will Baltic Sea be healthy?

Long time before targets are reached (up to 100 years)
Significant improvement within decades, perhaps even shorter

MAI is implemented year 0; An ensemble of 10 runs with different weather indicates variability

<u>Red</u>: MAI, <u>Grey</u>: Reference inputs

(Gustafsson et. Al, 2013)

Is it feasible to save the Baltic Sea?

Benefits 3,8(5,0) B €/year – **Costs 2,8 B €/year** = **Surplus 1(2,2) B €/year** Air and climate regulation Riogeochemical cycles Energy Aesthetic Science and education 02 CO2 H₂O CO₂ the sea Recreation retention waterways 00 Resilience Nutrient buffering resources Biologic Ornamental egulation resources heritage Regulation of Inedible goods Primary production environmental toxins

BalticSTERN Final Report "The Baltic Sea - Our Common Treasure. Economics of Saving the Sea ", 2013)

Coherent implementation

- 2010 Moscow, Ministerial Meeting
 National Implementation Programmes, overall progress
- 2011 High-level segment, HELCOM Identifying good examples and less-progress areas
- 2013 Copenhagen, Ministerial Meeting

 Efficiency of reaching the targets, additional needed actions

Topical for 2013 HELCOM Ministerial Meeting

- 1. HELCOM Baltic Sea Action Plan and EU Marine
 Strategy Framework Directive are the instrument
 for reaching Good Environmental Status of the
 Baltic Sea
- 2. Eutrophication is one of the main problems of the Baltic Sea
- 3. Agriculture remains the main source of eutrophication, but also is crucial for regional economy and brings opportunities for green growth
- 4. There is a need for further actions in all relevant sectors (including agriculture) to reduce nutrient inputs below the Maximum Allowable Inputs

Photo: Linda Johansson, 2012

Further needs to be discussed by 2013 HELCOM Ministerial

- ✓ Smart nutrient management as an opportunity to address nutrient losses
 - → Environmentally-acceptable levels of nutrient surplus in fertilization practices
 - → Use of available instruments to reach tolerable nutrient surplus in agriculture
 - → Introduction of annual nutrient accounting at farm level
 - → Full utilization of nutrient content of manure in fertilization practices (application of manure nutrient content standards nationally)
- √ Targeted measures to bring greatest environment effect
 - → As a first step address areas critical to nutrient pollution/losses
- ✓ Strengthening of agri-environment regulations, both regional and national
 - → Initiate revision of Annex III, Helsinki Convention,
 - → Apply new BAT for intensive rearing of poultry and pigs under IED,
 - → Support implementing of EU CAP greening (e.g. in ecological focus areas)
- ✓ Continued policy and stakeholder dialogue
 - → Broaden the scope and format of Agriculture and Environment Forum
 - → Annual stakeholder forum, thematic workshops, policy inputs
 - → Knowledge and technology exchange and transfer

Baltic COMPASS, 2013

