

Indoor Swimming Pools: Monitoring and Diagnostics

20th November 2017

Yao Xiong Loo Affil. AIRAH, GradIEAust

www.esbsconsult.com.au

Agenda

- Aquatic Centres
- BMS Capabilities
- Project Case Study BMS monitoring in an aquatic centre
 - Junee Aquatic Centre
- Lessons learnt

Aquatic Centres

High humidit

Poor v

High risk

- Dama_§
- Electri
- Chlorinat
 - Humar
 - Corros

Addressing These Issues

- Through passive measures natural ventilation .etc
- Through mechanical HVAC plant

- Control is important automated and/or manual
 - Manually opening louvres
 - HVAC plant operating on time schedule
- To maintain space temperature (°C) and relative humidity (%)

Capabilities

- Control
- Monitoring
 - System
 - Monthly energy targets keep track of monthly energy consumption
- Remote access Diagnostics
- Alarming / exception reporting

Project Case Study

• Junee Junction Recreation and Aquatic Centre (JJRAC)

Junee Junction Recreation and Aquatic Centre

Junee Junction Recreation and Aquatic Centre

Project

- HVAC Upgrade
- Objectives to improve:
 - Energy efficiency
 - System reliability
 - Thermal comfort conditions

 Project obtained grant from NSW Office of Environment and Heritage (OEH)'s Energy Saver program

Before

Pool hall served by obsolete electric heat pump

Before	After
Pool hall served by obsolete electric heat pump	Replaced with heat exchange unit with heating coil (gas heat source), variable-speed fans

Before	After
Pool hall served by obsolete electric heat pump	Replaced with heat exchange unit with heating coil (gas heat source), variable-speed fans
Five instantaneous hot water heaters provide heat source for pool water, inslab heating system and DHW - unreliable	

Before	After
Pool hall served by obsolete electric heat pump	Replaced with heat exchange unit with heating coil (gas heat source), variable-speed fans
Five instantaneous hot water heaters provide heat source for pool water, inslab heating system and DHW - unreliable	Replaced with three high efficiency condensing-type water heaters (boilers)

Installe

<u>Summary of Project – Result</u>

	Before	After Installation, before tuning
Electricity (kWh/y)	366,910	333,015
Gas (MJ/y)	4,230,499	4,227,194
GHG emissions (tCO _{2-e} /y)	635	601
% GHG Reduction	N/A	5

- Better controls
- Improved system reliability
- Objective is not just reducing GHG emissions!

Post-Completion Monitoring

- Preceded by site visit for inspection of installation
- Monitor equipment operation
- Ensure no latent defects remain

- Analysis on energy consumption through:
 - 1. Demand side
 - 2. External influences eg. weather

Demand Side: Issues Noted Through BMS Monitoring

- Unusually high gas consumption
 - Boilers incorrectly commissioned all three boilers operating when only one is required
 - Controls associated with Pool Hall heat exchange unit excessive OA .etc
- Controls incorrectly set on BMS time schedule, setpoint
- Washroom, foyer and gym lights on 24/7

Weather Dependency

- Through degree day and regression analyses
- Is energy consumption affected by weather?

- Degree day analysis:
 - 1. Obtain annual weather data from BoM
 - 2. Nominate base heating and cooling temperature (typically 18°C and 24°C)

- 3. Hypothesis: Higher HDD, larger gas consumption for heating
- 4. Hypothesis: Higher CDD, larger electricity consumption for cooling

Heating Degree Days – Regression Analysis

Cooling Degree Days – Regression Analysis

Weather Dependency

- Heating degree days in 2017 higher than 2016 by 11%
- Colder in 2017!

- One of the reason for high gas consumption
- Benefit of energy-efficient measures may not be evident due to weather effects

Summary of Monthly Gas Consumption

Summary of Monthly Electricity Consumption

Ongoing Tasks

- Remote monitoring through BMS
 - Alarms
- Issue Measurement and Verification (M&V) report to Council on monthly basis, covering:
 - Energy consumption
 - Weather
 - Issues noted through BMS
 - Recommendations

Future Opportunities

Pool filtration plant monitoring

Lessons Learnt

- Weather
- Building Staff
- Distance between project teams and site

Summary

- Controls complex, however beneficial if implemented and used correctly
- Remote access and good BMS functions allows energy consumption to be monitored
- Good relationship with clients and contractors important

Thank You

Yao Xiong Loo BEng, Affil.AIRAH, MIEAust

www.esbsconsult.com.au

loo@esbsconsult.com.au

