Indoor Swimming Pools: Monitoring and Diagnostics

20th November 2017
Yao Xiong Loo
Affil. AIRAH, GradIEAust
www.esbsconsult.com.au
Agenda

• Aquatic Centres
• BMS - Capabilities
• Project Case Study – BMS monitoring in an aquatic centre
 • Junee Aquatic Centre
• Lessons learnt
Aquatic Centres

• High humidity
 • Poor visibility
• High risk
 • Damage
 • Electrical safety
• Chlorinated air
 • Human health
 • Corrosion
Addressing These Issues

• Through passive measures – natural ventilation .etc
• Through mechanical HVAC plant

• Control is important – automated and/or manual
 • Manually opening louvres
 • HVAC plant operating on time schedule

• To maintain space temperature (°C) and relative humidity (%)
Building Management System (BMS)

- Automated control
- Also known as BAS, BACS
- Controls and monitors operation of energy consuming equipment in a building, such as:
 - Mechanical HVAC – pumps, air handling unit
 - Lighting
 - Fire

![Building Management System Interface](image-url)
Capabilities

• Control

• Monitoring
 • System
 • Monthly energy targets – keep track of monthly energy consumption

• Remote access - Diagnostics

• Alarming / exception reporting

Botany Map Room: Zone Temp South value 16.8 is exceeding limit of 17.0

05 Sep, 2017 1:25:32 AM, LOW LIMIT, Universal, Botany Map Room: Zone Temp South value 16.8 is exceeding limit of 17.0

This email has been checked for viruses by AVG.
http://www.avg.com
Project Case Study

- Junee Junction Recreation and Aquatic Centre (JJRAC)
Junee Junction Recreation and Aquatic Centre
Junee Junction Recreation and Aquatic Centre
Project Case Study

- Junee Junction Recreation and Aquatic Centre (JJRAC)
- Owned and operated by the Junee Shire Council (NSW)
- Area: 3,500m2
Project

• HVAC Upgrade

• Objectives – to improve:
 • Energy efficiency
 • System reliability
 • Thermal comfort conditions

• Project obtained grant from NSW Office of Environment and Heritage (OEH)’s Energy Saver program
Summary of Project

Before

Pool hall served by obsolete electric heat pump
Summary of Project

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool hall served by obsolete electric heat pump</td>
<td>Replaced with heat exchange unit with heating coil (gas heat source), variable-speed fans</td>
</tr>
</tbody>
</table>
Summary of Project

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool hall served by obsolete electric heat pump</td>
<td>Replaced with heat exchange unit with heating coil (gas heat source), variable-speed fans</td>
</tr>
<tr>
<td>Five instantaneous hot water heaters provide heat source for pool water, in-slab heating system and DHW - unreliable</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Project

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pool hall served by obsolete electric heat</td>
<td>Replaced with heat exchange unit with heating coil (gas heat source), variable-speed fans</td>
</tr>
<tr>
<td>pump</td>
<td></td>
</tr>
<tr>
<td>Five instantaneous hot water heaters</td>
<td>Replaced with three high efficiency condensing-type water heaters (boilers)</td>
</tr>
<tr>
<td>provide heat source for pool water, in-slab</td>
<td></td>
</tr>
<tr>
<td>heating system and DHW - unreliable</td>
<td></td>
</tr>
</tbody>
</table>
Summary of Project

• Installed a new BMS
Summary of Project – Result

<table>
<thead>
<tr>
<th></th>
<th>Before</th>
<th>After Installation, before tuning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity (kWh/y)</td>
<td>366,910</td>
<td>333,015</td>
</tr>
<tr>
<td>Gas (MJ/y)</td>
<td>4,230,499</td>
<td>4,227,194</td>
</tr>
<tr>
<td>GHG emissions (tCO₂-e/y)</td>
<td>635</td>
<td>601</td>
</tr>
<tr>
<td>% GHG Reduction</td>
<td>N/A</td>
<td>5</td>
</tr>
</tbody>
</table>

• Better controls
• Improved system reliability
• Objective is not just reducing GHG emissions!
Post-Completion Monitoring
• Preceded by site visit for inspection of installation
• Monitor equipment operation
• Ensure no latent defects remain

• Analysis on energy consumption through:
 1. Demand side
 2. External influences – eg. weather
Demand Side: Energy

- Establishing baseline data
- Electricity – Interval data, BMS
- Gas – BMS
- Water – BMS

ELECTRICAL METER

- V1-N: 242 V
- V2-N: 241 V
- V3-N: 240 V
- L1-A: 46 A
- L2-A: 41 A
- L3-A: 45 A
- kWh: 266751 kWh
- Pf: 0.96
- Kw: 29 kW
- KVA: 30 KVA
- KVAR: 7 KVAR

FILTRATION PUMP 1

- kWh: 187.97 kWh
- A: 0 A
- Hz: 0 Hz

FILTRATION PUMP 2

- kWh: 49855 kWh
- A: 16 A
- Hz: 50 Hz

POOL MAKE UP WATERMETER

- W: 8965 m3

GAS METER

- G: 561088 m3

WATERMETER

- W: 7765 m3
Demand Side: Issues Noted Through BMS Monitoring

• Unusually high gas consumption
 • Boilers incorrectly commissioned – all three boilers operating when only one is required
 • Controls associated with Pool Hall heat exchange unit – excessive OA etc.

• Controls incorrectly set on BMS – time schedule, setpoint
• Washroom, foyer and gym lights on 24/7
Weather Dependency

• Through degree day and regression analyses
• Is energy consumption affected by weather?

• Degree day analysis:

1. Obtain annual weather data from BoM
2. Nominate base heating and cooling temperature (typically 18°C and 24°C)
3. Hypothesis: Higher HDD, larger gas consumption for heating
4. Hypothesis: Higher CDD, larger electricity consumption for cooling
Heating Degree Days – Regression Analysis

\[y = 1037.7x + 93213 \]

\[R^2 = 0.8625 \]
Cooling Degree Days – Regression Analysis

\[y = 103.91x + 28578 \]
\[R^2 = 0.5112 \]
Weather Dependency

• Heating degree days in 2017 higher than 2016 by 11%
• Colder in 2017!

• One of the reason for high gas consumption
• Benefit of energy-efficient measures may not be evident due to weather effects
Summary of Monthly Gas Consumption
Summary of Monthly Electricity Consumption
Ongoing Tasks

• Remote monitoring through BMS
 • Alarms

• Issue Measurement and Verification (M&V) report to Council on monthly basis, covering:
 • Energy consumption
 • Weather
 • Issues noted through BMS
 • Recommendations
Future Opportunities

• Pool filtration plant monitoring
Lessons Learnt

• Weather
• Building Staff
• Distance between project teams and site
Summary

• Controls – complex, however beneficial if implemented and used correctly

• Remote access and good BMS functions – allows energy consumption to be monitored

• Good relationship with clients and contractors important
Thank You

Yao Xiong Loo
BEng, Affil.AIRAH, MIEAust

www.esbsconsult.com.au
looc@esbsconsult.com.au