

A Greener Agriculture for a Bluer Baltic Sea – Visions for Nutrient Management 27/28 August 2013, Helsinki

Worldwide P reserves are finite so that a sustainable use of P is imperative on a global scale!

BUSINESS OPPORTUNITIES

The P intake with food products doubled since the 1990s (Rindlisbacher 2012).

A Greener Agriculture for a Bluer Baltic Sea – Visions for Nutrient Management 27/28 August 2013, Helsinki

The Federal Ministry of Food, Agriculture and Consumer Protection (BMELV) estimates that in relation to the produce 20-75% of the food or 20 million tonnes of groceries are disposed each year in Germany.

FAO valued the dumping of foodstuff to one third of the total production worldwide.

The P dilemma withering crops or withering waterbodies?

Severe P deficiency in maize

Severe eutrophication of a lake

A Greener Agriculture for a Bluer Baltic Sea – Visions for Nutrient Management 27/28 August 2013, Helsinki

Manure application is restricted to 170 kg/ha*yr N, but additional mineral fertilizer input is not regulated.

As a consequence increasing soil P levels go along with escalting mineral and organic fertilizer rates.

P content of plants is not related to soil P status and P surplus in the nutrient balance.

Options for improving P efficiency in agriculture

P-efficient crop plants

Targeted P nutrition of livestock

Site-specific P management

Safe recycled & new P fertilizer materials

Ultimate target is a closed P cycle on farms!

Site-specific nutrient management

Local knowledge

Variable rate fertilisation

(Haneklaus and Schnug 2006. Handbook of Precision Agriculture - A Global Perspective, pp. 91-151)

The small-scale variability of soil and plant parameters may be within a paddock as high as in the whole surrounding landscape.

(Haneklaus and Schnug 2006. Handbook of Precision Agriculture - A Global Perspective, pp. 91-151)

Mismatch of P demand and uniform P fertilizer rates

P fertiliser rates may equal off-take by harvest products on soils where the soil P status is sufficiently high for obtaining the potential yield.

Origin of nutrients in harvest products of cultivated plants

Annotation: off-take with target yield

D = fertiliser; B = nutrients from previous fertiliser applications; C = native soil nutrients; b = Utilisation efficiency of accumulated nutrients; c = utilisation efficiency of native nutrients in soil; d = utilisation efficiency of fertiliser-derived nutrients in the year of application

(Schnug et al. 2003. Landbauforsch Völkenrode 53: 1-11; Schick et al. 2013. Report on P-Engine. www.balticmanure.eu)

http://baltic-ecoregion.eu

P-rates based on off-take are economically viable and ecologically sound!

Assessing and addressing the small-scale spatial variation of P in soils

- Directed sampling
- Identification of monitor pedocells for soil sampling
- Optimizing supply with essential nutrients, organic matter and biological activity
- Using exclusively water or citric acid soluble P forms
- Accounting for P in farmyard manure to 100%
- P fertilizer rates:
 - P_{CAL} < 75 mg kg⁻¹ P, then rates > off-take
 - P_{CAL} > 75 mg kg⁻¹ 100 mg kg⁻¹ P, then rates = off-take
 - P_{CAL} > 100 mg kg⁻¹ P, then no P until P_{CAL} < 100 mg kg⁻¹ P
 - (rule of thumb: soil P content halfs within 8-10 years)

Algorithms for a balanced variable rate input of N, P and K within a three year crop rotation employing a NPK fertilizer with tailor-made nutrient ratio

Year	Algorithms for NPK fertilizer							
1	NPK fertilizer							
	N_{OPT}^{-1}	P _{N:P (min)}	K _{N:K (min)}					
2	NK fertilizer		P fertilizer					
	N_{OPT}^{-1}	K _{N:K (min)}	$P_{OPT} = P_{tot}^2 - (P_{yr1} + P_{yr3})$					
3	NP fertilizer		K fertilizer					
	N_{OPT}	P _{N:P (min)}	$K_{OPT} = K_{tot} - (K_{yr1} + K_{yr2})$					

note: ¹optimum variable rate application; ²tot = total optimum, spatially variable amount of P and K for the crop rotation

Balanced P use of manure = rates compensate P demand

Mean off-take of 22 kg/ha P = 139, 87 and 72 kg/ha N (dairy cows, pigs and broiler) Maximum manure rate of 170 kg/ha N = 27, 43 and 52 kg/ha P (dairy cows, pigs and broiler)

Algorithms for manure application

If P demand ≥ off-take, then variable manure rate.

If P demand = off-take, then uniform manure rate.

If P demand < off-take, then no manure.

Limitations

- Suitable for direct use of poultry manure
- Cattle and pig manure require conditioning

Variation of P content in manure

	cv (%)					
Cattle	25.0 - 57.6					
Pigs	5.8 - 47.0					
Poultry	16.2 - 23.0					

Sources:

Barnett 1994. Bioressource Techn. 49: 139-147 Derikx et al. 1997. Netherlands J. Agric. Sci. 45: 65-79 Sharpley and Moyer 2000. J. Environm. Qual. 29: 1462-1469

Norms for recycled fertilizer products

Mineral composition of manure and digestate samples

Product	d.m	Р	Zn	Cu	Pb	Cd	Cr	Ni
		(% d.m.)		(m	ng/kg			
Original substrate 1	9.9	0.5	188	54	1.4	0.1	25	11
Digestate 1		0.6	301	81	2.2	0.2	23	10
Original substrate 2		1.1	1110	81	1.2	0.2	8.5	7.8
Digestate 2		1.9	2115	145	1.2	0.4	8.9	10
Original substrate 3	5.3	0.6	334	41	0.7	0.2	12	6.9
Digestate 3	8.3	1.1	628	85	1.2	0.3	11	7.8
Gasified pig manure		3.9	1605	241	3.1	0.1	61	28
		% of total P						
Water		< 0.01						
Alkaline ammonium citrate		19						
(AAC)								
Neutral ammonium citrate		37						
(NAC _{EU})								
Water + NAC		40						
Citric acid		54						
Formic acid		66						

Recommendations for farmers

- 1. Set-up your own on-farm experimentation
- 2. Postulate full declaration of fertilizer materials
- 3. Treat your soils as an unique heritage

Recommendations for policy makers

- 1. Mandatory recording of whereabouts of manure
- 2. Adopt full declaration of fertilizer materials (EU)
- 3. Balanced fertilisation is soil and marine protection

