Best practices in topo-bathymetric lidar collection & processing

Tim Webster, Nathan Crowell, Kevin McGuigan, Candace MacDonald, Kate Collins + many

CANADA FOUNDATION FOR INNOVATION FOR INNOVATION

<u>Tim.Webster@nscc.ca</u> Research Scientist Applied Geomatics Research Group Centre Of Geographic Sciences Nova Scotia Community College **NSCC** Applied Research

Centre of Geographic Sciences Middleton | Nova Scotia | Canada

Outline

- Quick intro to CH2 topo-bathymetric lidar Processing flowchart/research products
- Real-time turbidity buoys
- Detection of 1 x 1 m cubes
- Variable AGL 300 vs. 400 m + overlap
- Multi-use products from
 - the topo-bathy survey
 - Conclusions

Source: Leica Geosystems

Dense point cloud of lidar data captured for the by several flight lines. Halifax, 2014

THE

o photo line

Research & Development of additional map products

Turbidity & Wind Direction, Cape John

If wind is blowing between 270 and 90 degrees (from NW or NE) & Wind speed is > 25 km/hr

Water can take between 8 and 16 hours to clear

Oct. 2015 Max. Depth 4 m

Sept. 2014 Max. Depth 6 m

Cape John 2014 Lidar Survey (4/m4) bdS build (km/h) 45 0 15 0 1 30 01/Oct/14 Wind Dir (°) 180 06 30 01/Oct/14 30 01/Oct/14

3 CB-50s D-cell batteries

Modem + Turbidity

1 CB-150 Solar Panel + Modem + Wind Temp + + Turbidity

2016 Mission utilizing the Turbidity Buoys

-3.83 m

0 100 200 m

Neguac CSR

2

2016 Mission utilizing the Turbidity Buoys

Cape John - John Bay 2016 - Detail of Flight Window

-7.842285156 -2.313012123 3.21626091 8.745533943 14.2748069

Point Densities at 300m and 400m Altitude

	Nominal Point Density (pt/m ²)		
300m Altitude Data Collection	Single Line	Overlap	Double Overlap
Bathymetry Points	2.1	. 3.6	6.5
Topo + Bathy Laser (Ground Points)	33.8	56.4	112.7
Topo Laser Only (Ground Points)	29.0	55.6	97.9

400m Altitude Data Collection	Single Line	Overlap	Double Overlap
Bathymetry Points	1.6	3.1	4.9
Topo + Bathy Laser (Ground Points)	20.6	47.4	80.9
Topo Laser Only (Ground Points)	19.3	46.7	79.9

Point density increased on average of approximately 20% at 300 metre altitude over 400 metres.

Point Cloud gridded to 50cm resolution

400m Single Flightline

400m Overlapping Flightlines

50m

Point Cloud gridded to 50cm resolution

300m Single Flightline

300m Overlapping Flightlines

50m

400 m 60% overlap 300 m 60% overlap

Bathymetry Standard Deviation vs AGL & Depth

300m at depth of 4.5m:368 Pts, St Dev 0.07Bottom points

4.5m

400m at depth of 4.5m:385 Pts, St Dev 0.10Bottom points

300m at depth of 7.3m: 209 Pts, **St Dev 0.20** Bottom points

400m at depth of 7.3m: 155 Pts, **St Dev 0.25** Bottom points

Cape John Topo-Bathymetric testing area

N_Profile S_Profile

Surveys conducted Sept. 26, 2014, 400 m 30% Oct. 28, 2015, 400 m 30% July 13, 2016, 400 m 30% July 19, 2016, 400 m 30% Aug. 30, 2017, 400 m, 60% Aug. 30, 2017, 300 m, 60%

75 37.5 0 75 m Legend Aug30_300_2017_contours Aug30_400_2017_contours July19_2016_contours July 13_2016_contours

Lidar DEM profiles northward with & without refraction & speed adjustment

20170830_400 --- 20170830_400NR

Detecting Submerged Features 1m Metal Cubes placed within Survey Area

1m Metal Cubes as seen in Airborne Imagery

400m altitude: 10 returns from three flightlines (3, 4, and 3 returns on each pass)

400m altitude: 6 returns from three flightlines (2, 2, and 2 returns on each pass)

Light scattering with depth + beam divergence

1m Metal Cubes in the Point Cloud: Number of detected returns and effect of beam divergence on point distribution

300m altitude: 11 returns from two flightlines (4 and 7 returns on each pass)

300m altitude: 9 returns from two flightlines (5 and 4 returns on each pass)

Classification of Submerged Features Strength or Amplitude-Intensity of the Returns

Spatially points returned off the 1m Metal Cube are indistinguishable from the surrounding water column noise

However, intensity of these returns are much higher than the surrounding water column noise. This noise can be filter out using intensity thresholds

1m Metal Cubes in gridded surface (50cm resolution), 5m depth

400m Altitude

300m Altitude

Submerged Cubes: Shag Harbour (July 2016)

North Cube

▲ South Cube

July 11 survey

~4.5 m water Surrounded by eelgrass

> ~5.8 m water Surrounded by ??

North Cube July 13, 2016

2.5

Increased wind-fetch on the 11th, glint effects the photos and obstructs seeing the cube

Southern Cube, too deep to see

124.00

Intensity difference highlights the cube

1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -

July 11

July 13

and the second second

Second collection with cube removed

Can we detect boulders in such an environment?

Cross-Section

Can we detect boulders in such an environment?

Exposed ground

Lidar point cloud

Cross-Section

Stronger return From shallower real target, less scattering in the water column

http://www.cbc.ca/news/canada/new-brunswick/tsb-report-into-deaths-of-3-fishermen-in-tabusintac-released-1.2833664

Landing

The lidar data fills in the shallow area that the CHS Multibean echosounder could not acquire safely. A hybrid continuous elevation model will be constructed for hydrodynamic modelling. Boat Hr

High : 15 Low : -30

CGVD28 (m) 50 25 0

9/3/2016 02:00:00, Time step 0 of 144

Conclusions

- Processing workflow scripted for improved automation, still need human inspection, now includes export of point clouds and raster models to virtual reality and mixed reality devices. Great QA tools
- Continued research into benthic habitat mapping using lidar-orthophoto combination 85% range, + additional waveform metrics
- Best practice around turbidity management for optimal surveys
- $1 \ge 1 \mod 1$ m cubes detectable at depths of 5-6 m on lidar, deeper = wider
- 2017 experiment with standard 400 m AGL vs. 300 m and 60% flight line overlap vs. standard 30% point density increased 20% @ 300m
- Depth effects bottom variance, can use intensity to differentiate real targets vs. water column noise
- Multiple applications of the surveys beyond charting benthic habitat, hydrodynamic models ...

Acknowledgement: equipment support NNOVATION.CA

Nova Scotia Research and Innovation Trust

