12-Lead ECG Interpretation: A primary care perspective

Sally K. Miller,
PhD, AGACNP-BC, AGPCNP-BC, FNP-BC, FAANP
Senior Lecturer
Fitzgerald Health Education Associates
North Andover, MA
Clinical Professor
Drexel University College of Nursing and Health Professions
Philadelphia, PA
Nurse Practitioner,
Nevada Health Center, Amargosa Valley, NV

Disclosure
• No real or potential conflict of interest to disclose.
• No off-label, experimental or investigational use of drugs or devices will be presented.

Objectives
• At the conclusion of this session the participant will:
 – Discuss 5-step approach to 12-lead ECG interpretation.
 – Analyze acute and chronic morphologic changes.
 – Determine axis with the hexaxial plot.
 – Apply 5-step analysis to case study presentation.

Outline
• Propagation of the AP
 – Normal conduction
 – Axis deviation
• 5-step approach
 – Rate, rhythm, intervals, axis, morphology
• Case study

Vector Analysis and Axis Determination
• Initiation and propagation – Sequence of cardiac activation
 – The SA node depolarizes spontaneously.
 – Atrial muscle depolarizes rapidly.
 – The wave of depolarization funnels to AV node where it is delayed.
 – Current travels to the bundle of HIS.

Vector Analysis and Axis Determination (continued)
• Initiation and propagation – Sequence of cardiac activation (cont.)
 – Current divides into right and left bundles.
 – Depolarization of interventricular septum is left to right.
 – Current moves simultaneously through the right and left bundle branches.
 – Ventricles repolarize.
Initiation and Propagation

Limb Leads

- Vector is a voltage force that has direction as well as amplitude.
- Electrical events in the heart occur in three dimensions.
- ECG paper converts those dimensions to a one dimension picture – hence 12 leads.
- Using 12 leads allows us to visualize events from the anterior, inferior, and lateral perspective.

Limb Leads (continued)

- The leads
 - Offer a lateral and inferior view
 - Axis is plotted based on the hexaxial system.
 - Find the limb lead with the voltage closest to 0.
 - Identify its right angle lead.
 - On the ECG, see if that lead is positive (+) or negative (-).

The Hexaxial Plot
Axis Determination

- Determine the corresponding direction on the hexaxial plot.
- Because the net vector is normally down and to the left, the normal axis should be in the vicinity of 60° – a range of −30° to +110° is normal.

Axis Determination (continued)

- If the axis deviates to the left of −30°, this represents a left axis deviation.
- If the axis deviates to the right of +110°, this represents a right axis deviation.

The Hexaxial Plot
The System of ECG Interpretation

- Rate
- Rhythm
- Intervals
- Axis
- Morphology

Rate

- Determine the R-R interval.
- Each large square is 0.2 seconds.
- Divide the number of large squares between R waves into 300 to determine rate.
- Normal rate is 60 to 100 bpm.

Rhythm

- Rhythm interpretation is presumed as a prereq to this program!
- The second step in 12-lead ECG assessment is identification of the rhythm, e.g., NSR, SB, ST, A-V block, atrial dysrhythmia, ventricular dysrhythmia, etc.

Intervals

- P-R interval represents A-V conduction
 - Should be 0.12 to 0.22 seconds
 - Prolonged P-R interval indicates a first degree block.
 - Shortened P-R interval indicates a junctional rhythm with retrograde conduction.

Intervals (continued)

- QRS duration represents ventricular depolarization.
 - Should be <0.12 seconds
 - Prolonged duration indicates a block in the bundle branches or a ventricular ectopic foci.
Intervals (continued)

- Q-T interval represents repolarization of the ventricle.
 - Q-T interval should be \(< \frac{1}{2} \) the R-R interval.
 - Long Q-T interval increases the risk of ventricular dysrhythmia and sudden death.

QRS Axis

- Identify the lead where the net voltage of the QRS is closest to 0.
- Look for the perpendicular lead.
- If the deflection of the perpendicular lead is +, then the axis is at the positive end of the pole.
- If the deflection of the perpendicular lead is -, then the axis is toward the negative end of the pole.

Abnormalities Caused by Drugs and Metabolic Conditions

- Sinus bradycardia
 - Beta adrenergic antagonists
 - Calcium channel antagonists
 - Digitalis
 - Adenosine
 - Hypoxemia
 - Hypothyroidism
 - Hypothermia
 - Hyperkalemia

Sinus Tachycardia

- Catecholamines
- Caffeine
- Amphetamines
- Hyperthyroidism
- Anemia
- Fever

Heart Block

- Digitalis
- Beta-adrenergic blockers
- Calcium channel blockers
- Adenosine
- Hyperkalemia
Second-degree AV Block

Atrial Flutter/Fibrillation
- Flutter
 - Hypoxemia
- Fibrillation
 - Thyroid hormone
 - Hyperthyroidism

Atrial Flutter

Atrial Fibrillation

Ventricular Fibrillation
- Most antidysrhythmic drugs
- Digoxin
- Tricyclic overdose
- Hypokalemia
- Hypomagnesemia
- Hypocalcemia

Ventricular Fibrillation (continued)
Torsade de pointe

- Class I antidysrhythmics
- Amiodarone
- Phenothiazine derivatives
- Tricyclic overdose
- Long QT syndrome

Analysis of the 12-lead ECG
Part 2

Morphologic Changes

- The V leads (V₁ to V₆), aka precordial leads, represent the anterior wall of the heart.
 - V leads may be referred to as “anterior” leads.
 - The limb leads represent the inferior and lateral walls of the heart.

<table>
<thead>
<tr>
<th>Inferior Wall</th>
<th>Lateral Wall</th>
<th>Anterior Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>II, III, aVF</td>
<td>I, aVL, (V₆)</td>
<td>V leads</td>
</tr>
</tbody>
</table>

P Wave Abnormalities

- The P wave represents atrial depolarization; an abnormal P wave would logically suggest an atrial abnormality.
- Left atrial abnormalities
 - Biphasic P wave in V₁ is most common.
 - Must be 1 x 1 mm to be significant
 - Biphasic P waves occur in conditions that increase LVEDP.
 - CHF, LVH, hypertensive heart disease can all cause this abnormality.

P Wave Abnormalities (continued)

- Broad, notched P waves in limb leads suggest left atrial dilation.
- These occur in conditions such as mitral stenosis and regurgitation.
Right Atrial Abnormalities

- P wave > 2.5 mm in any lead
- Occurs in conditions such as lung disease and pulmonary artery hypertension

QRS Abnormalities

- Right bundle branch block (RBBB)
 - QRS > 0.12 seconds
 - Remember that current normally moves left to right in the interventricular septum
 - ECG will record normal left to right activation in V1.
 - This is followed by normal LV activation.
 - Late current LV to RV results in second upward deflection in V1.
 - After RV activation, return to baseline.

QRS Abnormalities (continued)

- Remember the normal flow of current and how it reflects on an ECG.
 - ECG will record normal left to right activation in lead I – initial deflection is negative.
 - LV depolarization produces an upward deflection.
 - Late LV to RV current produces a negative deflection.
 - After RV activation, return to baseline.
Incomplete RBBB

- Usually a normal variant
- Can reflect RV hypertrophy or dilation
- Very common with atrial septal defect
- RSR pattern in V₁
- QRS is <0.12 seconds.

Left Bundle Branch Block

- Sequence is opposite RBBB
- Loss of initial normal left to right activation
- Interventricular septum is activated from right to left, causing an abnormal upward deflection in the left lateral leads.
- QRS is >0.12 seconds.
- Septum is activated from right to left, but the blocked left bundle limits the impulse.

LBBB (continued)

- Right side depolarizes first. It is thin walled, so it produces a small current.
- After RV depolarization, the current travels around to left ventricle.
- Late left depolarization produces terminal QRS force.
Fascicular Blocks

- The left bundle branch divides into two fascicles; the anterior and posterior.
- LBBB is when both fascicles are blocked; QRS is wider than 0.12 seconds.
- When only one of the fascicles is blocked, the diagnosis is either “left anterior fascicular block” or “left posterior fascicular block.”

Fascicular Blocks (continued)

- Diagnosis of fascicular block is made when there is a shift in axis.
- The QRS is not necessarily wider than normal.
- LAFB is extreme left axis deviation, at least -45° and not caused by IWMI.
- LPFB is diagnosed by right axis deviation, at least >90°, usually >110 to 120°.

The Hexaxial Plot

LAFB

LPFB
The Hexaxial Plot

Bifascicular Block
- A right bundle branch block
 - RSR pattern in V1
 - QRS>0.12 seconds
- A coincident block of either the left anterior or posterior fascicle
- AKA – a RBBB with either left or right axis deviation

Left Ventricular Hypertrophy
- When you have hypertrophy of muscle a variety of changes occur
 - The larger muscle mass produces more voltage.
 - The increased size changes axis of electrical conduction.
 - Resultant high pressure in left atria can change character of voltage movement through left atria.

Left Ventricular Hypertrophy (continued)
- Sokolow + Lyon (Am Heart J, 1949;37:161)
 - \(SV_1 + R V_5 \) or \(V_6 \) >35 mm
- Cornell criteria (Circulation, 1987;3:565-72)
 - \(SV_3 + R aVL \) >28 mm in men
 - \(SV_3 + R aVL \) >20 mm in women
Left Ventricular Hypertrophy
(continued)
• Framingham criteria
 (Circulation, 1990; 81:815-820)
 – R aVL >11 mm
 – R V4-6 >25 mm
 – S V1-3 >25 mm
 – S V1 or V2 + R V5 or V6 >35 mm
 – R I + S III >25 mm

Romhilt + Estes
Point Score System
(continued)
• Amplitude – any of the following=3 points
 – Largest R or S wave in any limb lead ≥20 mm
 – S wave in V1 or V2 ≥30 mm
 – R wave in V5 or V6 ≥30 mm
• ST-T strain (change in lateral leads)
 – On digitalis=1 point
 – Not on digitalis=3 points

• Left atrial abnormality= 3 points
• LAD>-30°= 2 points
• QRS duration ≥0.09 sec= 1 point
• Intrinsicoid deflection in V5 or V6 ≥0.05 sec= 1 point
5 or more points=LVH
4 points=probable LVH

Right Ventricular Hypertrophy
• Most voltage in the QRS generated by LV
• Normally QRS in right precordial leads (V1-2) is negative.
• Normally QRS in left precordial (V5-6) leads is positive.
• Transition occurs in V3-4.
RVH

• Increased RV voltage over right leads causes QRS shift to the right.
• RV strain pattern (tall R in V1 deep S in V6, ST-T changes in right precordial leads).

RVH (continued)

• Diagnostic criteria
 – R/S in V1 ≥1 or
 – R in V1 + S in V6 >10.5 mm

• Supportive criteria
 – Right axis deviation ≥110°
 – Right atrial abnormality
 – ST depression + T wave inversion in V1 or V2

Poor R Wave Progression

• In the normal ECG, the transition from negative V1-2 to positive V5-6 deflection occurs during V3-4.
• A delay or absence of this transition on ECG just means that anatomically the transition point has moved.
Causes of PRWP

- COPD
- LV dilation
- Anterior wall MI
- Misplaced precordial leads

Low QRS Voltage

- QRS amplitude <5 mm in all limb leads
- QRS amplitude in V leads usually <10 mm, but not necessary for diagnosis.

Causes of Low QRS Voltage

- Effusion
- Cardiomyopathy
- Hypothyroidism
- Obesity
- Emphysema
- Normal variant

ST-T Wave Abnormalities

- Ischemia and infarction tend to be regional events.
- Depending upon anatomy, there may be some overlap.
ST-T Wave Abnormalities (continued)

- An event in a large RCA that loops around the lateral wall might cause inferolateral ECG changes.
- An event in a large anterior descending artery that has branches to the lateral wall can cause an anterolateral event.

Arteries and Corresponding Leads

ST Segment Depression

- Stenosed artery with some retrograde flow
- \(O_2 \) demand exceeds supply
- Subendocardial ischemia
- Region of myocardium furthest from the stenosed artery is occluded
- If ischemia persists and myocardial injury occurs, a subendocardial MI occurs.
 - Later changes will show T wave inversion

Subendocardial Injury

ST Segment Elevation

- Most common cause is transmural MI.
- Affected artery is totally occluded.
- Is the primary ECG indication for thrombolytic therapy
- Prinzmetal’s angina (acute vasospasm) usually produces complete vessel occlusion.
 - Will produce ST segment elevation if ECG recorded during event
ST Segment Elevation
(continued)

• The size of the inferior and lateral MI is proportional to the sum of the elevation in the appropriate leads.
• The size of the anterior wall MI is proportionate to the number of anterior leads with elevation.
Other Causes of ST Elevation

- There are causes of ST elevation that are not specific to myocardial damage.
 - Pericarditis
 - Early repolarization

Nonspecific ST changes

- A label typically applied to ST depression that is not placed in a clinical context
- Specific ST changes
 - During exercise ECG
 - During chest pain

T Wave Inversion

- Reflects altered repolarization of ventricular muscle during ischemia/injury event
- Can reflect permanent injury with scar formation and loss of muscle; permanent atypical path of repolarization

Q Waves

- Initial negative deflection of the QRS complex
- Must be 1 mm deep and 1 mm wide to be significant
- May be normal in leads III and V₆
- A Q wave indicates transmural injury.
Atypical Situations

Lateral Wall MI
- Lateral wall sometimes called the “electrocardiographically silent” region
- Can have transmural injury of the lateral wall with few or no ST-T changes and no Q waves
- Patients with typical chest pain and enzyme elevations, but normal ECG, should be admitted.

Silent MI
- Some patients can have significant Q waves and corresponding regions of akinesis on echocardiogram.
- Most common in patients with DM and diabetic neuropathy

Pseudo MI
- Infrequently other conditions produce Q waves.
 - LVH
 - Conditions that cause PRWP
 - Hypertrophic cardiomyopathy
 - When unexplained Q waves occur, evaluate for wall motion abnormality.
WPW Syndrome

- Activation of accessory pathway results in preexcitation of the ventricle.
- Delta wave can appear to be a Q wave.
- No history of MI
- Normal echocardiogram
- Short P-R interval

The Hexaxial Plot
Morphology
- P wave abnormality
- Bundle branch block
 - Right or left
 - Incomplete RBBB
 - LAFB or LPFB
 - Bifascicular block

- LVH
- RVH
- PRWP
- Low QRS voltage
- ST-T abnormality
- Q wave

Interpretation

End of Presentation
Thank you for your time and attention.
Sally K. Miller
PhD, AGACNP-BC, AGPCNP-BC, FNP-BC, FAANP
www.fhea.com sally@fhea.com

References

References (continued)
• Images/Illustrations: Unless otherwise noted, all images/illustrations are from open sources, such as the CDC or Wikipedia or property of FHEA or author.
• All websites listed active at the time of publication.

Copyright Notice

Copyright by Fitzgerald Health Education Associates
All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage and retrieval system, without permission from Fitzgerald Health Education Associates

Requests for permission to make copies of any part of the work should be mailed to:
Fitzgerald Health Education Associates
85 Flagship Drive
North Andover, MA 01845-6184

Statement of Liability

• The information in this program has been thoroughly researched and checked for accuracy. However, clinical practice and techniques are a dynamic process and new information becomes available daily. Prudent practice dictates that the clinician consult further sources prior to applying information obtained from this program, whether in printed, visual or verbal form.
• Fitzgerald Health Education Associates disclaims any liability, loss, injury or damage incurred as a consequence, directly or indirectly, of the use and application of any of the contents of this presentation.
Abnormalities of Rate

• Sinus bradycardia
 – Beta adrenergic antagonists
 – Calcium channel antagonists
 – Digitalis
 – Adenosine
 – Hypoxemia
 – Hypothyroidism
 – Hypothermia
 – Hyperkalemia
Sinus Tachycardia
- Catecholamines
- Caffeine
- Amphetamines
- Hyperthyroidism
- Anemia
- Fever
Second-degree AV Block
Atrial Flutter
Atrial Fibrillation
Ventricular Fibrillation (continued)
Torsade de pointe
(continued)
12-Lead ECG Interpretation: A primary care perspective