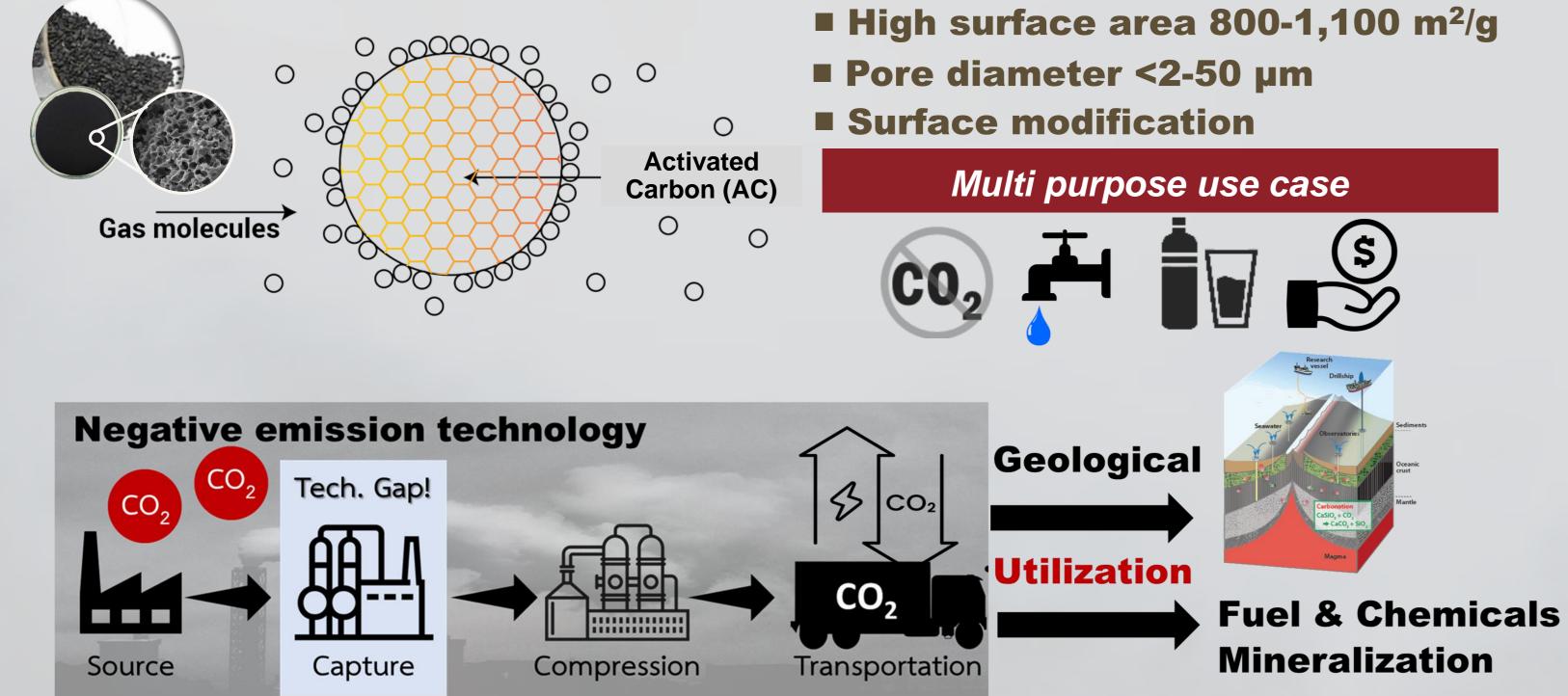
MTEC

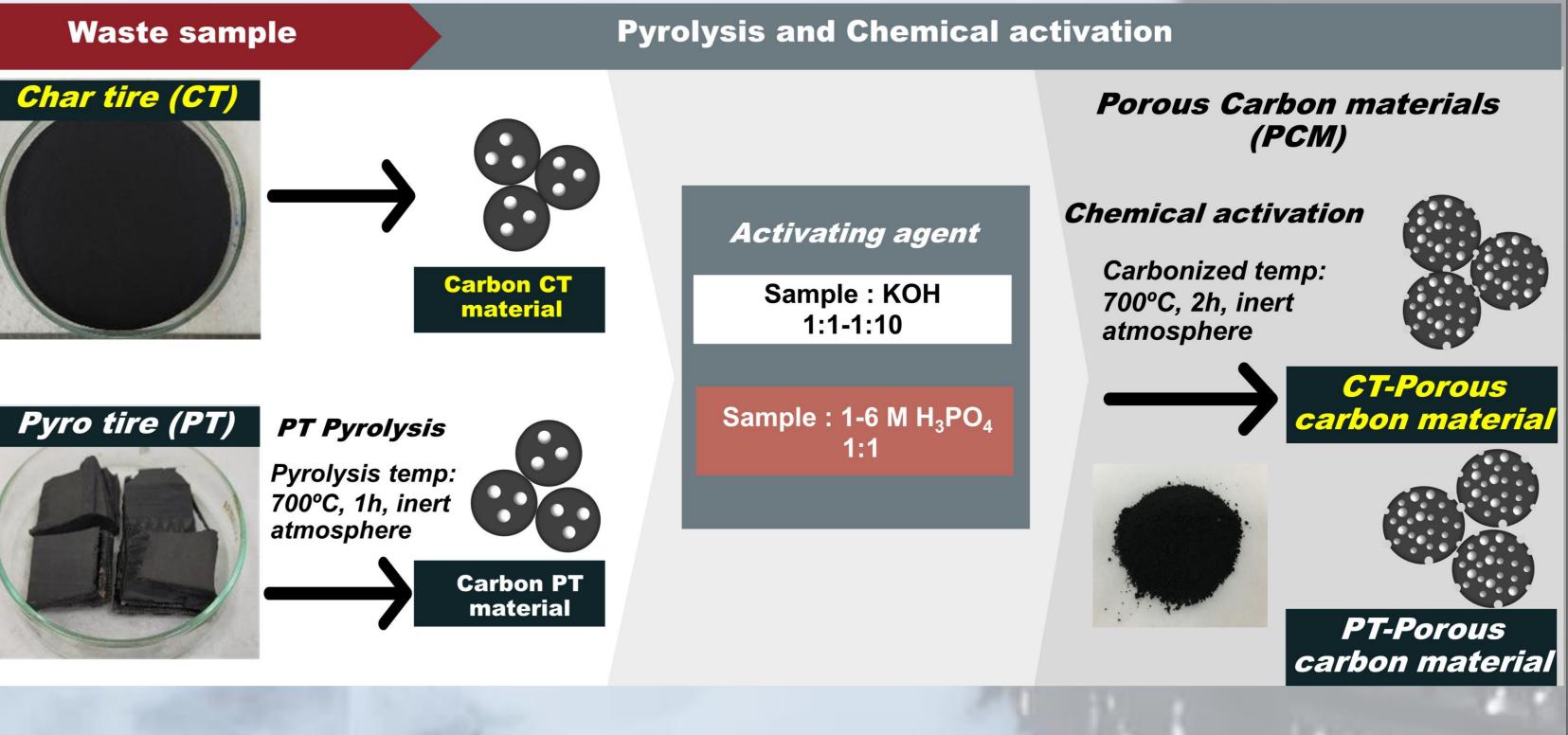

Sirinwaranon P.¹, Sricharoenchaikul V.², Atong D.¹

¹National Metal and Materials Technology Center (MTEC), Thailand Science Park, Pathum Thani, Thailand ²Faculty of Engineering, Department of Environmental Engineering, Chulalongkorn University, Bangkok, Thailand

This research aims to to produce micro-meso porous activated carbon from waste tire by the combination of chemical and physical methods in the fixed bed reactor for CO₂ adsorption. The chemical activation method is impregnation in acid (H₃PO₄) or base (KOH). These methods can drastically improve the porosity and specific surface area of AC from waste tire pyrolysis product. The experimental consists of 2 parts; (i) char can be obtained by pyrolysis of waste tire at 700°C with heating rate of 10°C/min for 1 h under inert atmosphere. Char sample was sieved into 0.125-0.425 mm size. (ii) activation 3 g of char by immersion in 1 M H₃PO₄ at 60°C for 3 h and subsequently carbonized at 700°C for 2 h in horizontal furnace. Afterwards, the powder was washed by deionized water to neutral pH followed by drying at 105°C in the oven. The obtain fine powder was characterized using X-ray diffraction (XRD), and Fourier transform infrared spectrometry (FT-IR) and N₂ adsorptiondesorption isotherms. The cross-linkage between C-C bonds of waste tire could be broken down by pyrolysis at temperature of 700°C. The XRD pattern shows broad peak around 20 of 24° indicated the amorphous. The broad band of FT-IR spectra at 3600-3200 cm⁻¹, 3100-2900 cm⁻¹, 1649 cm⁻¹, and 1469 cm⁻¹ are O-H stretching of hydroxyl groups, C-H stretch from carbonyl groups, C=O stretching of carboxylic groups, respectively. For both CT and PT treating with chemical activation either H_3PO_4 or KOH yield highest surface area of 106 and 137 m²/g, respectively. The results indicate that char from waste tire pyrolysis has suitable properties to be utilized as porous carbon in CO₂ adsorption process. Further application of this work can help solving the challenge of disposal of waste tire and establishing the policy of Sustainable Development Goals (SDGs) and Thailand Bio-Circular-Green (BCG) economy model.

Introduction

Multiporous carbon for gas adsorption


Aim: To produce micro-meso porous activated carbon from waste tire by the combination of chemical and physical methods in the fixed bed reactor for CO₂ adsorption.

Results and discussions

Textural analysis

Experiment

Results and discussions

5.10

84.27

7.52

0.33

1.83

9.67

PT-pyrolyzed

СТ

Composition of PCM

Ultimate analysis (%wt)

Carbon

Calcite

ZnS

Ash

С

Η

Ν

S

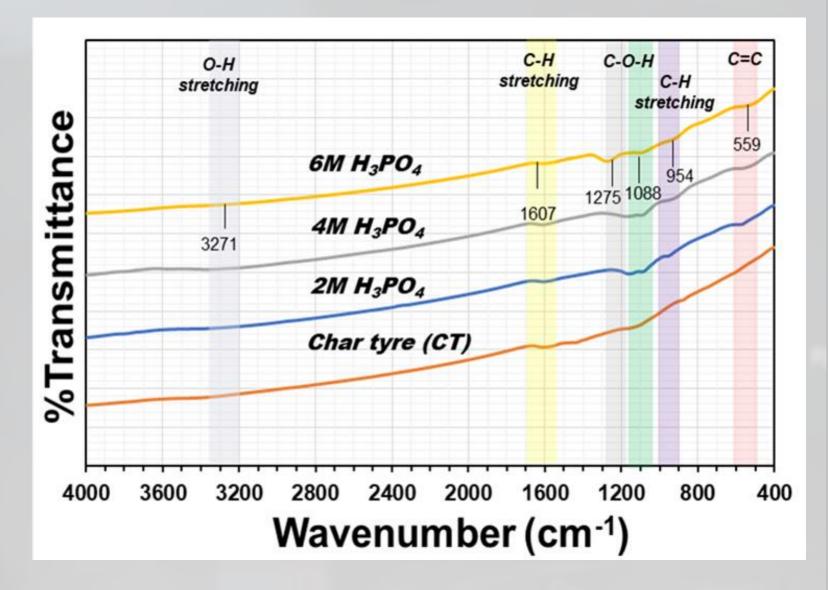
(а.

Intensity

O (by diff.)

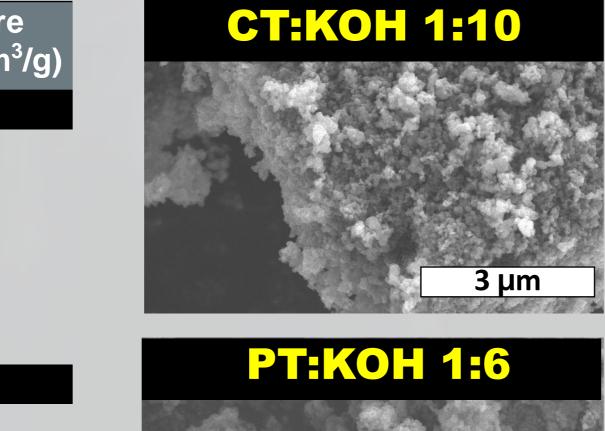
Composition	СТ	PT			
Proximate analysis (%wt)					
Moisture	2.07	0.91			
Volatile matter	6.31	65.84			
Fixed C	57.73	28.15			

33.88


70.07

6.20

1.01


1.33

2.78

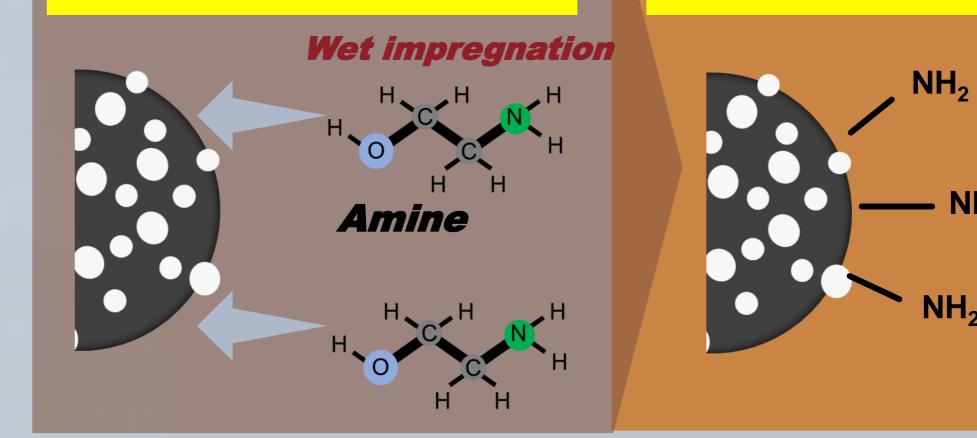
- O-H stretching vibration (3271 cm⁻¹), aromatic ring C-H stretching vibration (1607 cm⁻¹), and C-H outof-plane bending (559-954 cm⁻¹)
- The amorphous carbon with the small peak around 24° due to imperfect formation of graphite as broad peak around $2\theta 20-30^{\circ}$.
- Minute impurities, zinc sulfide and calcite, probably from the additive

CT-PCM and PT-PCM		NH ₂ -F	PCM	Property analy		nalys	ysis		
	upcom		ja tre i	nd	CO ₂ (adsorpti	ion ca	pac	ity
Futi	ıre w	ork							
10	30 2	50 2θ degree	70	90	•	probably nents for ti			

	Activation ratio	Surface area (m²/g)	Average pore diameter (nm)	Total pore volume (cm ³ /g)
СТ				
As received	-	90.26	25.53	0.58
	1:2	71.65	21.68	0.39
	1:4	79.07	23.47	0.46
КОН	1:6	120.20	18.15	0.55
	1:8	124.02	16.03	0.50
	1:10	136.90	<i>16.89</i>	0.58
PT				
Pyrolyzed	-	78.21	23.05	0.45
	1:2	59.32	21.45	0.32
	1:4	94.98	12.83	0.30
КОН	1:6	114.70	12.54	0.36
	1:8	106.73	14.01	0.37
	1:10	93.65	13.28	0.31

Textural analysis

	Activation		Surface	Average pore	Total pore
	Conc.	Ratio	area (m²/g)	diameter (nm)	volume (cm ³ /g)
СТ					
	1 <i>M</i>	1:1	106.50	1 8.98	0.51
H ₃ PO ₄ ,	2M		80.41	25.03	0.50
	4M		85.68	13.34	0.29
	6M		57.35	17.93	0.26
PT					
H₃PO₄, 60°C, 3h	1M	1:1	57.74	21.11	0.30
	2M		59.17	19.58	0.39
	4M		63.07	20.84	0.33
	6M		35.71	24.77	0.22


Activation with H_3PO_4

Activation with KOH

Conclusions

- Porous Carbon Materials (PCM) from waste tire activated with KOH exhibited superior adsorption properties than H_3PO_4 activated char.
- Char tire (CT) activated by KOH possessed favorable intrinsic properties as CO₂ adsorbent from surface area (SA) of 138.90 m²/g with mesopore structure (2-50 nm).
- Pyrolysis tire (PT-pyrolyzed) activated with KOH displayed satisfactory intrinsic properties as CO₂ adsorbent from surface area (SA) of 114.70 m²/g.
- Char tire has surface area of 70-90 m²/g with high ash and sulfur from addition of CaCO₃ (as extender) and sulfur (as vulcanizing agent) during tire production.

Lab-scale reactor

Dimension: 100 x 1 cm (HxID) Temperature: 25-100 °C CO₂: 15-100 %Vol Pressure: 1 atm

- Functional gr. (FTIR) - Proximate and CHNS - Phase (XRD) - Morphology (SEM) - Pore size - Surface area

> Dry condition *'Carbamate"*

With H₂O

Acknowledgement

This project is funded by National Research Council of Thailand (2021) and the National Metal and Materials Technology Center (MTEC), Thailand [Project No. P-2150634]