

Plug Loads Consume Approx. 29%* of Seattle
Energy Code Office Building Site Energy and
38% of Site Electricity (SEC, 2009)

Plug Load Energy in NW Buildings

Office Building: Seattle Energy Code 2009 (SEC, 2009)
EUI ~42 kBtu/ft²-yr
Plug loads alone = ~12.8 kBtu/ft²-yr

*This is based on modeling done in 2009 – I presume the wattage is dropping somewhat die to adoption of more laptop computers.

Plug Loads Consume Approx. 29%* of Seattle Energy Code Office Building Site Energy and 38% of Site Electricity (SEC, 2009)

Plug Load Energy in NW Buildings

Office Building: Seattle Energy Code 2009 (SEC, 2009)

EUI ~42 kBtu/ft²-yr

Plug loads alone = \sim 12.8 kBtu/ft²-yr

Bullitt Center

EUI ~16 kBtu/ft²-yr (Now operating ~10 kBtu/ft²-yr) Plugs alone = ~7.6 (3.1) kBtu/ft²-yr- with controls

If plug load reduction performance is not *persistent* over time the project will not meet net-zero operation.

© UW Integrated Design Lab, 2015

Green Lease at Bullitt Center

- Many provisions...
- Includes tenant energy budget apportioned by square footage of leased area.

UW Leased Area: 7950 ft²

Annual Energy budget: 5452 kWh

Plug Load Energy Allocation Density: 0.69 kWh/ft² Plug Load "Density" @ 2000 hrs: 0.345 W/ft² (whole building)

@ 200 ft²/person: ~70 W/workstation

© UW Integrated Design Lab, 2015

