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Introduction 

 

The electrical power system normally operates in a balanced three-phase sinusoidal steady-state 

mode.  However, there are certain situations that can cause unbalanced operations.  The most 

severe of these would be a fault or short circuit.  Examples may include a tree in contact with a 

conductor, a lightning strike, or downed power line. 

 

In 1918, Dr. C. L. Fortescue wrote a paper entitled “Method of Symmetrical Coordinates 

Applied to the Solution of Polyphase Networks.”  In the paper Dr. Fortescue described how 

arbitrary unbalanced 3-phase voltages (or currents) could be transformed into 3 sets of balanced 

3-phase components, Fig I.1.  He called these components “symmetrical components.”  In the 

paper it is shown that unbalanced problems can be solved by the resolution of the currents and 

voltages into certain symmetrical relations.   

 

C

B

C

B

 
Fig I.1 

 

By the method of symmetrical coordinates, a set of unbalanced voltages (or currents) may be 

resolved into systems of balanced voltages (or currents) equal in number to the number of phases 

involved.  The symmetrical component method reduces the complexity in solving for electrical 

quantities during power system disturbances.  These sequence components are known as 

positive, negative and zero sequence components, Fig I.2 

 

 
Fig I.2 
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The purpose of this paper is to explain symmetrical components and review complex algebra in 

order to manipulate the components.  Knowledge of symmetrical components is important in 

performing mathematical calculations and understanding system faults.  It is also valuable in 

analyzing faults and how they apply to relay operations. 

 

 

1. Complex Numbers 
 

The method of symmetrical components uses the commonly used mathematical solutions applied 

in ordinary alternating current problems.  A working knowledge of the fundamentals of algebra 

of complex numbers is essential.  Consequently this subject will be reviewed first. 

 

Any complex number, such as jba + , may be represented by a single point p, plotted on a 

Cartesian coordinates, in which a  is the abscissa on the x axis of real quantities and b the 

ordinate on the y axis of imaginary quantities.  This is illustrated in Fig. 1.1 

 

θ

 
Fig. 1.1 

 

Referring to Fig. 1.1, let r  represent the length of the line connecting the point p to the origin 

and θ  the angle measured from the x-axis to the line r.  It can be observed that  

 

 

θcos⋅= ra  (1.1) 

θsin⋅= rb  (1.2) 

 

 

2. Properties of Phasors 
 

A vector is a mathematical quantity that has both a magnitude and direction.  Many quantities in 

the power industry are vector quantities.  The term phasor is used within the steady state 

alternating linear system.  It is used to avoid confusion with spatial vectors: the angular position 

of the phasor represents position in time, not space.  In this document, phasors will be used to 

document various ac voltages, currents and impedances. 

 

A phasor quantity or phasor, provides information about not only the magnitude but also the 

direction or angle of the quantity.  When using a compass and giving directions to a house, from 

a given location, a distance and direction must be provided.  For example one could say that a 

house is 10 miles at an angle of 75 degrees (rotated in a clockwise direction from North) from 

where I am standing.  Just as we don’t say the other house is -10 miles away, the magnitude of 
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the phasor is always a positive, or rather the absolute value of the “length of the phasor.”  

Therefore giving directions in the opposite direction, one could say that a house is 10 miles at an 

angle of 255 degrees.  The quantity could be a potential, current, watts, etc. 

 

Phasors are written in polar form as  

 

θ∠= YY  (2.1) 

θθ sincos YjY +=  (2.2) 

 

where Y  is the phasor, Y is the amplitude, magnitude or absolute value and θ is the phase angle 

or argument.  Polar numbers are written with the magnitude followed by the ∠ symbol to 

indicate angle, followed by the phase angle expressed in degrees.  For example o
Z 90110∠= .  

This would be read as 110 at an angle of 90 degrees.  The rectangular form is easily produced by 

applying Eq. (2.2) 

 

The phasor can be represented graphically as we have demonstrated in Fig. 1.1, with the real 

components coinciding with the x axis. 

 

When multiplying two phasors it is best to have the phasor written in the polar form.  The 

magnitudes are multiplied together and the phase angles are added together.  Division, which is 

the inverse of multiplication, can be accomplished in a similar manner.  In division the 

magnitudes are divided and the phase angle in the denominator is subtracted from the phase 

angle in the numerator. 

 

Example 2.1 

Multiply BA ⋅  where o
A 355∠= and o

B 453∠= .   

Solution 

( ) ( )ooooBA 453535453355 +∠⋅=∠⋅∠=⋅  
o8015∠=  

 

Example 2.2 

Solve 
D

C
 where o

C 3515∠= and o
D 503∠= .   

Solution 

( )oo

o

o

D

C
5035

3

15

503

3515
−∠








=

∠

∠
=  

o155 −∠=  
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3. The j and a operator 
 

Recall the operator j.  In polar form, oj 901∠= .  Multiplying by j  has the effect of rotating a 

phasor o90  without affecting the magnitude. 

 

Table 3.1 - Properties of the vector j 

 

0.00.11 j+=  
oj 901∠=  

118012 −=∠= oj  

jj o −=∠= 27013  
oj 901 −∠=−  

 

Example 3.1 

Compute jR  where o
R 6010∠= . 

Solution 

)6010(901 oojR ∠∠=  
o15010∠=  

Notice that multiplication by the j operator rotated the Phasor R  by o90 , but did not change the 

magnitude.  Refer to Fig. 3.1 

 

R

 

(a) R  

 

jR

R

 

(b) Rj  

Fig. 3.1. j effects 
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In a similar manner the a operator is defined as unit vector at an angle of 120
o
, written as 

o
a 1201∠= . The operator a

2
, is also a unit vector at an angle of 240

o
, written o

a 24012 ∠= .   

 

Example 3.2 

Compute aR  where o
R 6010∠= . 

Solution 

)6010(1201 ooaR ∠∠=  
o18010∠=  

R

 

(a) A  

 

aR

R

 

(b) Rj  

Fig. 3.2. a effects 

 

Table 3.2 - Properties of the vector a 

 

0.00.11 j+=  
o

a 1201∠=  
o

a 24012 ∠=  
oo

a 0136013 ∠=∠=  

01 2 =++ aa  

12 −=+ aa  
o

a 6011 ∠=+  

o
a 6011 2 −∠=+  

32 jaa =−  

32 jaa −=−  

o
a 3031 −∠=−  

o
a 3031 2 ∠=−  
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4. The three-phase System and the relationship of the 3  
 

In a Wye connected system the voltage measured from line to line equals the square root of 

three, 3 , times the voltage from line to neutral.  See Fig. 4.1 and Eq. (4.1).  The line current 

equals the phase current, see Eq. (4.2) 

 

 
Fig. 4.1 

 

LNLL VV 3=  (4.1) 

Φ= IIL  (4.2) 

 

In a Delta connected system the voltage measured from line to line equals the phase voltage.  See 

Fig. 4.2 and Eq. (4.3).  The line current will equal the square root of three, 3 ,  times the phase 

current, see Eq. (4.4) 

 

VLL

IΦIΦ

IL

 
 

Fig. 4.2 

 

Φ= VVLL  (4.3) 

Φ= IIL 3  (4.4) 
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The power equation, for a three phase system, is  

 

LLLIVS 3=  (4.5a) 

ψcos3 LLLIVP =  (4.5b) 

ψsin3 LLLIVQ =  (4.5c) 

 

where S is the apparent power or complex power in volt-amperes (VA).  P is the real power in 

Watts (W, kW, MW).  Q is the reactive power in VARS (Vars, kVars, MVars). 

 

 

5. The per-unit System 
 

In many engineering situations it is useful to scale, or normalize, dimensioned quantities.  This is 

commonly done in power system analysis.  The standard method used is referred to as the per-

unit system.  Historically, this was done to simplify numerical calculations that were made by 

hand.  Although this advantage is eliminated by the calculator, other advantages remain.  

• Device parameters tend to fall into a relatively narrow range, making erroneous values 

conspicuous. 

• Using this method all quantities are expressed as ratios of some base value or values.  

• The per-unit equivalent impedance of any transformer is the same when referred to either 

the primary or the secondary side. 

• The per-unit impedance of a transformer in a three-phase system is the same regardless of 

the type of winding connections (wye-delta, delta-wye, wye-wye, or delta-delta). 

• The per-unit method is independent of voltage changes and phase shifts through 

transformers where the base voltages in the winding are proportional to the number of 

turns in the windings. 

 

The per-unit system is simply a scaling method.  The basic per-unit scaling equation is 

 

valuebase

valueactual
unitper

_

_
=−  (5.1) 

 

The base value always has the same units as the actual value, forcing the per-unit value to be 

dimensionless.  The base value is always a real number, whereas the actual value may be 

complex.  The subscript pu  will indicate a per-unit value.  The subscript base  will indicate a 

base value, and no subscript will indicate an actual value such as Amperes, Ohms, or Volts. 

 

The first step in using per-unit is to select the base(s) for the system. 

 

Sbase
 
= power base, in VA.  Although in principle Sbase may be selected arbitrarily, in practice it is 

typically chosen to be 100 MVA. 
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Vbase = voltage base in V.  Although in principle Vbase is also arbitrary, in practice Vbase is equal 

to the nominal line-to-line voltage.  The term nominal means the value at which the system was 

designed to operate under normal balanced conditions. 

 

From Eq. (4.5) it follows that the base power equation for a three-phase system is: 

 

basebasebase IVS 33 =Φ  (5.2) 

 

Solving for current: 

 

base

base
V

S
I base

3

3Φ=   

 

Because S3Φbase can be written as kVA or MVA and voltage is usually expressed in kilo-volts, or 

kV, current can be written as: 

 

amperes
kV

kVA
I

base

base
base

3
=  (5.3) 

Solving for base impedance: 

 

base

base

base

base
base

S

V

I

V
Z

2

==   

 

ohms
kVA

xkV
Z

base

base
base

10002

=  (5.4a) 

or 

ohms
MVA

kV
Z

base

base
base

2

=  (5.4b) 

 

Given the base values, and the actual values: IZV = , then dividing by the base we are able to 

calculate the pu values 

 

pupupu

basebasebase

ZIV
ZI

IZ

V

V
=⇒=  
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After the base values have been selected or calculated, then the per-unit impedance values for 

system components can be calculated using Eq. (5.4b) 

 

)(
)(

2
Ω⋅








=

Ω
= Z

kV

MVA

Z

Z
Z

base

base

base

pu  (5.5a) 

or 

)(
1000 2

Ω⋅








⋅
= Z

kV

kVA
Z

base

base
pu  (5.5b) 

 

It is also a common practice to express per-unit values as percentages (i.e. 1 pu = 100%).  

(Transformer impedances are typically given in % at the transformer MVA rating.)  The 

conversion is simple 

 

100

_ valuepercent
unitper =−  

 

Then Eq. (5.5a) can be written as 

 

( ) ( )
22 10

100
%

base

base

base

base

kV

ZkVA

kV

ZMVA
Z

Ω
=

Ω⋅
=  (5.6) 

 

It is frequently necessary, particularly for impedance values, to convert from one (old) base to 

another (new) base.  The conversion is accomplished by two successive application of Eq. (5.1), 

producing: 

 









=

new

base

old

baseold

pu

new

pu
Z

Z
ZZ  

 

Substituting for old

baseZ  and new

baseZ  and re-arranging the new impedance in per-unit equals: 

 
2

















=

new

base

old

base

old

base

new

baseold

pu

new

pu
kV

kV

kVA

kVA
ZZ  (5.7) 

 

In most cases the turns ratio of the transformer is equivalent to the system voltages, and the 

equipment rated voltages are the same as the system voltages.  This means that the voltage-

squared ratio is unity.  Then Eq. (5.9) reduces to  

 









=

old

base

new

baseold

pu

new

pu
MVA

MVA
ZZ  (5.8) 
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Example 5.1 

A system has Sbase = 100 MVA, calculate the base current for 

a) Vbase = 230 kV 

b) Vbase = 525 kV 

Then using this value, calculate the actual line current and phase voltage 

where puI 95.4= , and puV 5.0=  at both 230 kV and 525 kV. 

 

Solution 

Using Eq. (5.3) amperes
kV

kVA
I

base

base
base

3
=  

a) AamperesIbase 251
2303

1001000
=

×

×
=  

 

b) AamperesI base 0.110
5253

1001000
=

×

×
=  

 

From Eq. (5.1)  

basepuactual III ⋅=   (5.9) 

basepuactual VVV ⋅=  (5.10) 

 

At 230 kV 

c) ( ) ( ) AAI actual 124225195.4 =⋅=  

d) ( ) ( ) kVkVVactual 1152305.0 =⋅=  

 

At 525 kV 

e) ( ) ( ) AAI actual 5440.11095.4 =⋅=  

f) ( ) ( ) kVkVVactual 2635255.0 =⋅=  

 

Example 5.2 

A 900 MVA 525/241.5 autotransformer has a nameplate impedance of 10.14% 

a) Determine the impedance in ohms, referenced to the 525 kV side. 

b) Determine the impedance in ohms, referenced to the 241.5 kV side 

Solution 

First convert from % to pu. 

1014.0
100

%
==

Z
Zpu  

 

Arranging Eq. (5.5a) and solving for Zactual gives 

 

base

base
pu

MVA

kV
ZZ

2

)( =Ω ; therefore 
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a) 
900

525
1014.0

2

525 ×=kVZ  

Ω= 05.31  

 

b) 
900

5.241
1014.0

2

5.241 ×=kVZ  

Ω= 57.6  

 

A check can be made to see if the high-side impedance to the low-side impedance equals 

the turns ratio squared. 

 

726.4
57.6

05.31
=  726.4

5.241

525
2

=







 

 

 

6. Sequence Networks 
 

Refer to the basic three-phase system as shown in Fig. 6.1.  There are four conductors to be 

considered: a, b, c and neutral n.   

 

anV bnV cnV

cI

bI

nI

aI

 
Fig. 6.1 

 

The phase voltages, pV , for the balanced 3Φ case with a phase sequence abc are 

o

paan VVV 0∠==  (6.1a) 

o

pbbn VVV 120−∠==  (6.1b) 

o

ppccn VVVV 2401200 −∠=+∠==  (6.1c) 

 

The phase-phase voltages, LLV , are written as 

 
o

LLbaab VVVV 30∠=−=  (6.2a) 
o

LLcbbc VVVV 90−∠=−=  (6.2b) 
o

LLacca VVVV 150∠=−=  (6.2c) 

 



 12 

Equation (6.1) and (6.2) can be shown in phasor form in Fig. 6.2. 

 

Ψ

Ψ

Ψ

 
Fig. 6.2 

There are two balanced configurations of impedance connections within a power system.  For the 

wye case, as shown in Fig. 4.1, and with an impedance connection of Ψ∠Z , the current can be 

calculated as 

 

ψ−∠== o

Y

P

Y

a
Z

V

Z

V
I 0  (6.3) 

 

Where Ψ is between o90− and + o90 .  For Ψ greater than zero degrees the load would be 

inductive ( aI lags aV ).  For ψ less than zero degrees the load would be capacitive ( aI leads aV ).   

The phase currents in the balanced three-phase case are 

 

ψ−∠= o

pa II 0  (6.4a) 

ψ−−∠= o

pb II 120  (6.4b) 

ψ−−∠= o

pc II 240  (6.4c) 

 

See Fig. 6.2. for the phasor representation of the currents. 

 

 

7. Symmetrical Components Systems 
 

The electrical power system operates in a balanced three-phase sinusoidal operation.  When a 

tree contacts a line, a lightning bolt strikes a conductor or two conductors swing into each other 

we call this a fault, or a fault on the line.  When this occurs the system goes from a balanced 

condition to an unbalanced condition.  In order to properly set the protective relays, it is 

necessary to calculate currents and voltages in the system under such unbalanced operating 

conditions.  

 



 13 

In Dr. C. L. Fortescue’s paper he described how symmetrical components can transform an 

unbalanced condition into symmetrical components, compute the system response by straight 

forward circuit analysis on simple circuit models, and transform the results back into original 

phase variables.  When a short circuit fault occurs the result can be a set of unbalanced voltages 

and currents.  The theory of symmetrical components resolves any set of unbalanced voltages or 

currents into three sets of symmetrical balanced phasors.  These are known as positive, negative 

and zero sequence components.  Fig. 7.1 shows balanced and unbalanced systems. 

 

B

 
Fig. 7.1 

Consider the symmetrical system of phasors in Fig. 7.2.  Being balanced, the phasors have equal 

amplitudes and are displaced 120
o
 relative to each other.  By the definition of symmetrical 

components, 1bV  always lags 1aV  by a fixed angle of 120
o
 and always has the same magnitude 

as 1aV .  Similarly 1cV  leads 1aV  by 120
o
.  It follows then that 

 

11 aa VV =  (7.1a) 

1

2

11 )2401( aa

o

b VaVV =∠=  (7.1b) 

111 )1201( aa

o

c aVVV =∠=  (7.1c) 

 

Where the subscript (1) designates the positive sequence component.  The system of phasors is 

called positive sequence because the order of the sequence of their maxima occur abc. 

 

Similarly, in the negative and zero sequence components, we deduce 

 

22 aa VV =  (7.2a) 

222 )1201( aa

o

b aVVV =∠=  (7.2b) 

2

2

22 )2401( aa

o

c VaVV =∠=  (7.2c) 

 

00 aa VV =  (7.3a) 

00 ab VV =  (7.3b) 

00 ac VV =  (7.3c) 

 

Where the subscript (2) designates the negative sequence component and subscript (0) designates 

zero sequence components.  For the negative sequence phasors the order of sequence of the 

maxima occur cba, which is opposite to that of the positive sequence.  The maxima of the 

instantaneous values for zero sequence occur simultaneously. 
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Fig.7.2 

 

In all three systems of the symmetrical components, the subscripts denote the components in the 

different phases.  The total voltage of any phase is then equal to the sum of the corresponding 

components of the different sequences in that phase.  It is now possible to write our symmetrical 

components in terms of three, namely, those referred to the a phase (refer to section 3 for a 

refresher on the a operator). 
 

210 aaaa VVVV ++=  (7.4a) 

210 bbbb VVVV ++=  (7.4b) 

210 cccc VVVV ++=  (7.4c) 

 

We may further simplify the notation as follows; define 
 

00 aVV =  (7.5a) 

11 aVV =  (7.5b) 

22 aVV =  (7.5c) 

 

Substituting their equivalent values 
 

210 VVVVa ++=  (7.6a) 

21

2

0 aVVaVVb ++=  (7.6b) 

2

2

10 VaaVVVc ++=  (7.6c) 

 

These equations may be manipulated to solve for 0V , 1V , and 2V  in terms of aV , bV , and cV .   

 

( )cba VVVV ++=
3

1
0  (7.7a) 

( )cba VaaVVV
2

1
3

1
++=  (7.7b) 

( )cba aVVaVV ++= 2

2
3

1
 (7.7c) 
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It follows then that the phase current are 
 

210 IIIIa ++=  (7.8a) 

21

2

0 aIIaIIb ++=  (7.8b) 

2

2

10 IaaIIIc ++=  (7.8c) 

 

The sequence currents are given by 
 

( )cba IIII ++=
3

1
0  (7.9a) 

( )cba IaaIII
2

1
3

1
++=  (7.9b) 

( )cba aIIaII ++= 2

2
3

1
 (7.9c) 

 

The unbalanced system is therefore defined in terms of three balanced systems.  Eq. (7.6) may be 

used to convert phase voltages (or currents) to symmetrical component voltages (or currents) and 

vice versa [Eq. (7.7)]. 

 

Example 7.1 

Given o

aV 535∠= , o

bV 1647 −∠= , o

cV 1057∠= , find the symmetrical components.  The 

phase components are shown in the phasor form in Fig. 7.3 

 

Va

Vb

Vc

Unbalanced condition

53
o

105
o

-164
o

 
Fig. 7.3 

Solution 

Using Eq. (7.7a)  

Solve for the zero sequence component: 

( )cbaa VVVV ++=
3

1
0  

( )ooo 10571647535
3

1
∠+−∠+∠=  

o1225.3 ∠=  
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From Eq. (7.3b) and (7.3c) 
o

bV 1225.30 ∠=  
o

cV 1225.30 ∠=  

 

Solve for the positive sequence component: 

( )cbaa VaaVVV
2

1
3

1
++=  

( ) ( )( )ooooo 1057240116471201535
3

1
∠⋅∠+−∠⋅∠+∠=  

o100.5 −∠=  

 

From Eq. (7.1b) and (7.1c) 
o

bV 1300.51 −∠=  
o

cV 1100.51 ∠=  

 

Solve for the negative sequence component: 

( )cbaa aVVaVV ++= 2

2
3

1
 

( ) ( )( )ooooo 1057120116472401535
3

1
∠⋅∠+−∠⋅∠+∠=  

o929.1 ∠=  

 

From Eq. (7.2b) and (7.2c) 
o

bV 1489.12 −∠=  

o

cV 289.12 −∠=  

 

The sequence components can be shown in phasor form in Fig. 7.4. 

 

 
Fig. 7.4 

 

Using Eq. (7.6) the phase voltages can be reconstructed from the sequence components. 
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Example 7.2 

Given o
V 1225.30 ∠= , oV 100.51 −∠= , oV 929.12 ∠= , find the phase sequence 

components.  Shown in the phasor form in Fig. 7.4 

Solution 

Using Eq. (7.6)  

 

Solve for the A-phase sequence component: 

 

210 VVVVa ++=  
ooo 929.1100.51225.3 ∠+−∠+∠=  

o530.5 ∠=  

 

Solve for the B-phase sequence component: 

 

21

2

0 aVVaVVb ++=  
ooo 1489.11300.51225.3 −∠+−∠+∠=  

o1640.7 −∠=  

 

Solve for the C-phase sequence component: 

 

2

2

10 VaaVVVc ++=  
ooo 289.11100.51225.3 −∠+∠+∠=  

o1050.7 ∠=  

 

This returns the original values given in Example 5.2. 

 

This can be shown in phasor form in Fig. 7.5. 

 

Vc2

Vc0

Vc1

Va2

Va1

Va0

Vb0

Vb2

Vb1

Va

Vb

Vc

 
Fig. 7.5 
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Notice in Fig. 7.5 that by adding up the phasors from Fig. 7.4, that the original phase, Fig. 7.3 

quantities are reconstructed. 

 

 

8. Balanced and Unbalanced Fault analysis 
 

Let’s tie it together.  Symmetrical components are used extensively for fault study calculations.  

In these calculations the positive, negative and zero sequence impedance networks are either 

given by the manufacturer or are calculated by the user using base voltages and base power for 

their system.  Each of the sequence networks are then connected together in various ways to 

calculate fault currents and voltages depending upon the type of fault. 

 

Given a system, represented in Fig. 8.1, we can construct general sequence equivalent circuits for 

the system.  Such circuits are indicated in Fig. 8.2.   

 

 
Fig. 8.1 

 

1I

1Vo01∠

2I

2V

0I

0V

0Z 1Z 2Z

 
Fig. 8.2 

 

Each of the individual sequence may be considered independently.  Since each of the sequence 

networks involves symmetrical currents, voltages and impedances in the three phases, each of 

the sequence networks may be solved by the single-phase method.  After converting the power 

system to the sequence networks, the next step is to determine the type of fault desired and the 

connection of the impedance sequence network for that fault.  The network connections are listed 

in Table 8.1 

 

Table 8.1 - Network Connection 

• Three-phase fault - The positive sequence impedance network 

is only used in three-phase faults. Fig. 8.3 
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• Single Line-to-Ground fault - The positive, negative and zero 

sequence impedance networks are connected in series. Fig. 8.5 

• Line-to-line fault - The positive and negative sequence 

impedance networks are connected in parallel. Fig. 8.7 

• Double Line-to-Ground fault - All three impedance networks 

are connected in parallel. Fig. 8.9 

 

The system shown in Fig. 8.1 and simplified to the sequence network in Fig. 8.2 and will be used 

throughout this section. 

 

 

Example 8.1 

Given puZ
o90199.00 ∠= , puZ o90175.01 ∠= , 

puZ o90175.02 ∠= , compute the fault current and 

voltages for a Three-phase fault.  Note that the 

sequence impedances are in per-unit.  This means that 

the solution for current and voltage will be in per-unit. 

Solution 

The sequence networks are interconnected, as shown in 

Fig. 8.3 

 

Note that for a three phase fault, there are no negative 

or zero sequence voltages. 

020 == VV  

020 == II  

The current 1I  is the voltage drop across 1Z  

1

1
1

Z

V
I =  

175.0

01
1

j
I

o∠
=  

71.5j−=  

 

The phase current is converted from the sequence value 

using Eq. (7.8). 

 

pujI
o

a 9071.5071.50 −∠=+−=  

puajaI
o

b 15071.5)0()71.5(0 2 ∠=+−+=  

puajaI
o

c 3071.5)0()71.5(0 2 ∠=+−+=  

 

Calculating the voltage drop, and referring to Fig. 8.3, the sequence voltages are 

 

2I

+

-

2V

0I

+

-

0V

0Z

2Z

1I

+

-

1Vo01∠

1Z

Fig 8.3
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020 == VV  

111 01 IZV o −∠=  

( ) 0.071.5175.011 =−−= jjV  

pu0.0=  

 

The phase voltages are converted from the sequence 

value using Eq. (7.6). 

 

puVa 0.00.00.00.0 =++=  

puaaVb 0.0)0.0()0.0(0.0 2 =++=  

puaaVc 0.0)0.0()0.0(0.0 2 =++=  

The per-unit value for the current and voltage would 

now be converted to actual values using Eq. (5.9) and 

Eq. (5.10) and knowing the base power and voltage for the given system.  See example 

5.1 for a reference. 

 

The currents and voltages can be shown in phasor form in Fig. 8.4 

 

 

Example 8.2 

Given puZ
o90199.00 ∠= , puZ o90175.01 ∠= , 

puZ o90175.02 ∠= , compute the fault current and 

voltages for a Single line-to-ground fault.  Note that the 

sequence impedances are in per-unit.  This means that 

the results for current and voltage will be in per-unit. 

Solution 

The sequence networks are interconnected in series, as 

shown in Fig. 8.5 

 

Because the sequence currents are in series, and using 

ohms law. 

210 III ==  

)( 210

1
0

ZZZ

V
I

++
=  

 

)175.0175.0199.0(

01
0

jjj
I

o

++

∠
=  

 

puj 82.1−=  

 

2I

+

-

2V

0I

+

-

0V

0Z

2Z

1I

+

-

1Vo
01∠

1Z

Fig 8.5

Ic

Ia

Ib

VaVb

Vc

Fig 8.4



 21 

The phase currents are converted from the sequence value using Eq. (7.8).  Substituting 

210 III ==  into Eq. (7.8) gives 

 

0000 3IIIIIa =++=  

000

2

0 =++= aIIaIIb   

00

2

00 =++= IaaIIIc  

Refer to Table 3.2: ( )01 2 =++ aa  

Note that 03IIa = .  This is the quantity that the relay “see’s” for a Single Line-to-Ground 

fault. 

 

Substituting pujI 82.10 −=  

 

)82.1(303 jIIa −==  

puj 46.5−=  

 

Calculating the voltage drop, and referring to Fig. 8.5, the sequence voltages are 

 

000 IZV −=  

111 IZVV −=  

222 IZV −=  

 

Substituting in the impedance and current from above 

 

362.0)82.1(199.00 −=−−= jjV  

( ) 681.082.1175.011 =−−= jjV  

( ) 319.082.1175.02 −=−−= jjV  

 

The phase voltages are converted from the sequence value using 

Eq. (7.6). 

 

0319.0681.0362.0 =−+−=aV  

puaaV
o

b 238022.1)319.0()681.0(362.0 2 ∠=−++−=  

puaaV
o

c 122022.1)319.0()681.0(362.0 2 ∠=−++−=  

 

The per-unit value for the current and voltage would now be converted to actual values 

using Eq. (5.9) and Eq. (5.10) and knowing the base power and voltage for the given 

system.  See example 5.1 for a reference. 

 

The currents and voltages can be shown in phasor form in Fig. 8.6 

 

 

Ia

Va

Vb

Vc

Fig 8.6
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Example 8.3 

Given puZ
o90199.00 ∠= , puZ o90175.01 ∠= , 

puZ o90175.02 ∠= , compute the fault current and 

voltages for a Line-to-Line fault.  Note that the 

sequence impedances are in per-unit.  This means that 

the solution for current and voltage will be in per-

unit. 

Solution 

The sequence networks are interconnected, as shown 

in Fig. 8.7 

 

Because the sequence currents sum to one node, it 

follows that 

21 II −=  

The current 1I  is the voltage drop across 1Z  in series 

with 2Z  

21

1
1

ZZ

V
I

+
=  

175.0175.0

01
1

jj
I

o

+

∠
=  

puj 86.2−=  

 

pujI 86.22 +=  

00 =I  

 

The phase current is converted from the sequence value using Eq. (7.8). 

 

pujjIa 086.286.20 =+−=  

pujajaIb 95.4)86.2()86.2(0 2 −=+−+=  

pujajaIc 95.4)86.2()86.2(0 2 =+−+=  

 

Calculating the voltage drop, and referring to Fig. 8.7, the sequence voltages are 

 

21 VV =  

222 IZV −=  

)86.2)(75.1( jj−=  

pu5.0=  

00 =V  

 

2I

+

-

2V

0I

+

-

0V

0Z

2Z

1I

+

-

1Vo01∠

1Z

Fig 8.7
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The phase voltages are converted from the sequence value using Eq. (7.6). 

 

puVa 0.15.05.00.0 =++=  

puaaVb 5.0)5.0()5.0(0.0 2 −=++=   

puaaVc 5.0)5.0()5.0(0.0 2 −=++=  

 

The per-unit value for the current and voltage 

would now be converted to actual values using 

Eq. (5.9) and Eq. (5.10) and knowing the base 

power and voltage for the given system.  See 

example 5.1 for a reference. 

 

The currents and voltages can be shown in phasor form in Fig. 8.8 

 

 

Example 8.4 

Given puZ
o90199.00 ∠= , puZ o90175.01 ∠= , puZ o90175.02 ∠= , compute the fault 

current and voltages for a Double Line-to-Ground fault.  Note that the sequence 

impedances are in per-unit.  This means that the solution for current and voltage will be 

in per-unit. 

Solution 

The sequence networks are interconnected, as 

shown in Fig. 8.9 

 

Because the sequence currents sum to one node, 

it follows that 

 

)( 201 III +−=  

 

The current 1I  is the voltage drop across 1Z  in 

series with the parallel combination of 0Z  and 

2Z  

 










+
+

=

20

20
1

1
1

ZZ

ZZ
Z

V
I  

 2I

+

-

2V

0I

+

-

0V

0Z

2Z

1I

+

-

1Vo01∠

1Z

Fig 8.9

Ic

Ib
VaVb

Vc

Fig (8.8)
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Substituting in oV 011 ∠= , and 0Z , 1Z , and 2Z , then solving for 1I  

 

pujI 73.31 −=  

1

20

2
0

)(
I

ZZ

Z
I

+
=  

75.1j+=  

1

20

0
2

)(
I

ZZ

Z
I

+
=  

99.1j+=  

The phase current is converted from the sequence value using Eq. (7.8).   

 

pujjjIa 099.173.375.1 =+−=  

pujajajI
o

b 1.15260.5)99.1()73.3(75.1 2 ∠=+−+=  

pujajajI
o

c 9.2760.5)99.1()73.3(75.1 2 ∠=+−+=  

 

Calculating the voltage drop, and referring to Fig. 8.9, the sequence voltages are 

 

210 VVV ==  

000 IZV −=  

)199.0)(75.1( jj−=  

pu348.0=  

 

The phase voltages are converted from the sequence value using Eq. (7.6). 

 

puVa 044.1348.0348.0348.0 =++=  

puaaVb 0)348.0()348.0(348.0 2 =++=   

puaaVc 0)348.0()348.0(348.0 2 =++=  

Refer to Table 3.2: ( )01 2 =++ aa  

 

The per-unit value for the current and voltage would 

now be converted to actual values using Eq. (5.9) and 

Eq. (5.10) and knowing the base power and voltage 

for the given system.  See example 5.1 for a 

reference. 

 

The currents and voltages can be shown in phasor 

form in Fig. 8.10 

 

 

 

Ic

Ib

Va

Fig 8.10

IR
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9. Oscillograms and Phasors 
 

Attached are four faults that were inputted into a relay and then captured using the relay 

software.  

 

Three-phase fault.  Compare to example (8.1) 

 
Fig 9.1a 

   
 Fig 9.1b Fig 9.1c 
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Single Line-to-Ground fault.  Compare to example (8.2) 

 
Fig 9.2a 

 

   
 Fig 9.2b Fig 9.2c 
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Line-to-Line fault.  Compare to example (8.3) 

 
Fig 9.3a 

 

   
 Fig 9.3b Fig 9.3c 
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Double Line-to-Ground fault.  Compare to example (8.4) 

 
Fig 9.1a 

 

   
 Fig 9.4b Fig 9.4c 
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10. Symmetrical Components into a Relay 
 

Using a directional ground distance relay it will be demonstrated how sequential components are 

used in the line protection.  To determine the direction of a fault, a directional relay requires a 

reference against which the line current can be compared.  This reference is known as the 

polarizing quantity.  Zero sequence line current can be referenced to either zero sequence current 

or zero sequence voltage, or both may be used.  The zero sequence line current is obtained by 

summing the three-phase currents.  See Fig. 10.1 

 
 

From Eq. (7.9) 

 

( ) rcba IIIII ==++ 03  (10.1) 

 

This is known as the residual current or simply 03I . 

 

The zero sequence voltage at or near the bus can be used for directional polarization.  The 

polarizing zero sequence voltage is obtained by adding an auxiliary potential transformer to the 

secondary voltage.  The auxiliary transformer is wired as a broken-delta and the secondary 

inputted to the relay.  See Fig 10.2 

 

 

03V

a
V

b
V

c
V

AV

BV

C
V

ΦA ΦB ΦC

 
 

 



 30 

From Eq. (7.7a) the zero sequence voltage equals 

 

( )cba VVVV ++=
3

1
0  (10.2a) 

( )cba VVVV ++=03  (10.2a) 

 

 

Example 10.1 

Using the values obtained from example 8.2, calculate 03V . 

Solution 

0=aV  

puV
o

b 238022.1 ∠=  

puV
o

c 122022.1 ∠=  

 
oo

V 122022.1238022.103 0 ∠+∠+=  

puo18008.1 ∠=  

 

The zero sequence voltage is puo18008.1 ∠ .  By connecting the value in the reverse gives 03V−  

which equals puo008.1 ∠ .  Plotting this, we can show in phasor form what the relay see’s, Ia 

lagging 03V−  by the line angle.  In this case resistance is neglected, therefore Ia lags by 90
o
.  

(see Fig 10.3). 
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