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Motivation

B Patient disease information is not fully captured
in structured EHR

B Accurate recording patient conditions is critical
for
— Risk prediction
— Supporting clinic decision making
— Ensuring correct billing

* Problem Definition: Given clinical notes, extract
the conditions of a patient.
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DI++ System Architecture

| did talk to the patient about surveillance of the meningioma
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Disease Mention Classification: Challenge:

It’s hard to judge whether or not a disease mention is a patient
condition. It’s context sensitive!

— “I did talk to the family about surveillance of the
meningioma”

— “his family history includes cancer in his father”

— “Flag Reference GFR estimates are unreliable in patients
with severe malnutrition or obesity, rapidly changing
kidney function, loss of limbs or abnormal muscle
mass....”
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Leveraging Al For NLP

B Breakthrough in Al: Deep Learning

B Two successful deep learning models
— Convolutional Neural Network (CNN):
Good at feature extraction, but ignore the word orders.
— Long short-term memory (LSTM):

Can learn sequence dependency, but lack the ability of
feature extraction.

Can we get the best of both worlds?
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CLSTM-Attention Architecture For
Disease Mention Classification

— CNN: Sentence feature extraction
— LSTM: Mention feature dependency learning
— Attention: Focus on important words
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Sentence Feature Representation

— Input: Mention sentence (3-sentences)
— Output: A set of feature vectors
— Model: CNN

Embedding
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Mention Classification

— Input: Features Vectors of Mention Context
— Output: whether the mention is Positive/Negative
— Model: Bi-LSTM, Attention
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Evaluation

B Data Set: Inovalon’s MORE2 Registry Dataset
— 11,943 clinical charts, 1.06 million pages

B Ground Truth:

— Coder Team in Inovalon reads each page of charts and
highlight the positive diseases

B Diseases:

— We focus on identifying diseases categorized by
Hierarchical Condition Category (HCC) coding
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Evaluation Methods

B Mention Extraction:

— To test if DI++ can extract all positive disease
mentions

B Mention Classification:

— Given an identified disease mention, test if CLSTM-
Attention model can correctly classify it as positive
or negative
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Mention Extraction

B Comparison Systems

— cTAKES[5]: Apache cTAKES is an open-source natural
language processing system that extracts clinical information,
include disease mention, from clinic notes.
— Inovalon System: Support Vector Machine approach

Systems Precision | Recall | F1 Score
cTAKES 0.07 0.89 0.13
Inovalon System | 0.54 0.65 0.60
DI++ 0.78 0.59 0.67
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Mention Classification

Approaches Accuracy | AUC
CNN 83.01% 0.81
LSTM 82.36% 0.79
Hierarchical Attention | 84.38 0.82
Transformer 85.76% 0.82
CLSTM-Attention 86.52% 0.84
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Case Study

CONDITIONS DETECTED

Congestive Heart Failure [HCC85 ] -

Specified Heart Arrhythmias [HCC96 ]

Chronic Obstructive Pulmonary Disease [HCC111]

Angina Pectoris [HCC88 ] -

Rheumatoid Arthritis, Inflammatory Tissue Disease [HCC40 ]

Diabetes with Chronic Complications [HCC18 ]

Diabetes without Complication [HCC19 ] A

Artificial Openings [HCC188]

Morbid Obesity [HCC22 ]

Vascular Disease [HCC108]

Schizophrenia [HCC57

Major Depressive, Bipolar, Paranoid Disorders [HCC58
Drug/Alcohol Dependence [HCC55

Disorders of Immunity [HCC47

Bone/Joint/Muscle Infections/Necrosis [HCC39

Other Significant Endocrine, Metabolic Disorders [HCC23
Metastatic Cancer and Acute Leukemia [HCC8
Cardio-Respiratory Failure and Shock [HCC84
Coagulation Defects, Hematological Disorders [HCC48

Pneumococcal Pneumonia, Empyema, Lung Abscess [HCC115] A

Aspiration, Specified Bacterial Pneumonias [HCC114] A

Lung and Other Severe Cancers [HCC9 ]

Unstable Angina, Acute Ischemic Heart Disease [HCC87 ] 4
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Discharge Date: 07/21/2014

. Please kindly refer to the detailed discharge summary dictated on 07/18/2014
T
PRIMARY DISCHARGE DIAGNOSIS:
1. Second-degree heart block. This has resolved and the patient has been
restarted on Coreg 3.125 mg b.i.d_It should be noted that the patient i
no longer on 25 mg b.i.d. of
2. Status post left hemiarthroplasty. | Targeted HCC — HCC 85

SECONDARY DISCHAR SIS:

1. Chronic diastolic con ve heart failure.

2. Morbid obesity.

3. Obstructive sleep apnea. Field HCC — HCC 18
4. Chronic anemia.

5. Chronic kidney disease
6. Diabetes mellitus type 2.
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