Petroleum System Modeling offshore Israel-Impact on Southeastern Levant Basin Oil and **Gas Prospectivity**

Michael Gardosh Israel Ministry of National Infrastructure, Energy and Water Resources

> **Nicolas Mouchot** (BeicipFranlab, Rueil-Malmaison-France)

Project Objectives

- The Levant Basin is a proven gas province offshore Israel, Cyprus and Egypt
- Numerous oil shows have also been reported near shore Israel and offshore N. Sinai.
- The Ministry of Energy contracted BeicipFranlab in 2015 to perform a Basin Analysis and Petroleum system modeling offshore Israel
- The project was aimed at providing a consistent scheme of oil and gas distribution, through 1D, 2D and 3D modeling, namely:
 - Reservoir/seal distribution
 - Source-rocks occurrence
 - Oil and Gas charge

Main Petroleum plays of the Levant Basin

Plays / Elements	Source Rock	Reservoir Rock		
Pliocene	Upper-Miocene Type III	Turbidite Sands above Messinian unc.		
Mid-Upper Miocene	Intermediate Shale Type III	Turbidite Sands		
Oligo- Miocene	Oligocene Baffle shale Type III Early Gas	Turbidite Sands (ABCD reservoir)		
Lower Cretaceous	Upper Jurassic (Kimm.) Type II	Turbidites Sands		
Middle Jurassic	Middle/Upper Jurassic. Type II ?	Fractured Carbonates		

Seal

Pliocene shales

Messinian salt

Middle Miocene shale

Middle-Upper **Cretaceous shale**

Upper Jurassic/Lower Cretaceous shale y.gov.il

infrastructure, r Resources

Mesozoic Source-rocks (Carbolog Analysis)

• Wells on the slope indicate TOC rich levels that can be correlated stratigraphically

- Senonian
- Mid Cretaceous
- Oxfordian-Kimmerdigian
- Callovian
- TOC up to 3%
- Type II and III

Energy and Water Resources ww.energy.gov.il

Tertiary Source-rocks

- TOC (%) 0.00 0.50 1.00 1.50 2.00 2.50 1400 1900 2,400 2 900 3400 - Aphrodite-02 (m) 3 900 -0.5% TOC Zigim 4 400 4 900 Oligo-Miocene 5.400 Sands 5 900 No precise stratigraphy description
- Wells in the basin show TOC values in the range of 0.5% -1.5%, which are considered favorable for biogenic gas generation, in Upper Miocene and Oligocene strata

1D Data and Modeling - Thermal Regime

- Present day thermal regime in the Levant Basin is characterized by:
 - Average to high Geothermal Gradient nearshore and onshore (28°C/km - 35 °C/km)
 - Low Geothermal Gradient in the deep offshore (20-22°C/km)

Low GG in deep offshore is the results of:

- High sedimentation rate
- Salt presence (highly conductive)
- thinned Crust (with low crustal radiogenic contribution)

2D Modeling

Lithofacies

Evaporites Carbonate Platform Deep-Marine Carbonate Shallow Marine Deep-Marine Mix Carb-Clastics Marine Mix Carb-Clastic-2 Slope Mix Carb-Clastic-2 Slope Mix Carb-Clastic-1 Slope Clastics Mix clastics-2 Mix clastics-1 Sandy Turbidites Thermogenic Source rock Marine shale

2D Structural Evolution using Backstripping Algorithm

2D Maturity and HC generation setting

2D Overpressure Modeling

Ministry of National infrastructure, Energy and Water Resources

Oil and Gas Distribution

- Oil and gas quality derived from compositional modeling of HC generation/expulsion and migration •
- Tertiary system sourced by TOC lean source-rocks (early gas prone) •
- Mesozoic system oil sources mainly by Middle-Upper Jurassic source-rock ٠
- No communication between Mesozoic system (oil and gas prone) and Tertiary system (early gas • prone)

Oil in Upper J.

HC Quality

3D Modeling of HC charge

Main components of the petroleum system and layer lithologies used in the 3D model

	Period	Age (Ma)	Petroleum system			Seismic horizons	Main lithologies		
		<u> </u>						Shalf	
			Source Rock	Reservoir	Sear		Busin	Siope	Shelj
26	Upper Plio-Quat	0 - 2.665				Base Yafo			
25	Lower Pliocene	2.665 - 5.33				_			
24	Messinian Evaporites	5.33 - 5.6				Top Evaporites			
23	Gap	5.6 - 5.7				Base Evaporites			
22	Tortonian-Messinian	5.7 - 11							
21	Serravalian-Langhian	11 - 14	Biogenic						
20	Intra-Middle Miocene	14 - 16.5				Mid Miocene			
19		16.5 - 17.75		Sand A-B					
18	Chattian-Burdigalian	17.75 - 19			B-C Shale				
17		19 - 24		Sand C-D					
16	Late Oligocene	24 - 29	Biogenic						
15	Lower Oligocene	29 - 34							
14	Senonian-Eocene	34 - 67.25				Base Oligocene			
13	Upper Cretaceous	67.25 - 88.6	thermogenic						
12	Turonian-Aptian	88.6 - 125				MiddleCretaceous			
11	Barremian	125 - 130							
10	Valanginian-Hauterivian	130 - 140		Neocomian sands					
9	Berriasian	140 - 145							
8	Kimmeridgian-Tithonian	145 - 156							
7	Oxfordian	156 - 159	thermogenic						
6	Callovian-Oxfordian	159 - 165							
5	Dogger	165 - 176		Bathonian		Middle Jurassic			
4	Toarcian	176 - 183	thermogenic						
3	Lias	183 - 200							
2	Trias	200 - 151							
1	Paleozoic (Permian)	151 - 300				basement			
	Basement								

Origin of early (biogenic gas) Heating Rate of Tertiary lean TOC shaly units during deposition

- Most favorable heating rates ensuring preservation of early gas generated : 10 to 16 °C/Ma
- Sediment type (clay), Burial Rate and TOC (<1.2%) allow • preservation of early gas

Middle-Upper Jurassic SR Transformation Ratio through time

Transformation Ratio (%)

Upper Cretaceous SR (Senonian-Campanian) Transformation Ratio through time

3D HC migration and entrapment modeling

HC SATURATION Representation (through time)

Trap Fill representation (present day)

Estimation of unrisked volumes from modeling

- The unrisked volumes in place distribution can be derived from the 3D petroleum system modeling.
- Each run remains calibrated on available data (presence of oil and gas, P, T, maturity)
- The uncertainty on unrisked volumes (P90, P50 and P10) is obtained from sensitivity analysis runs on uncertain parameters such as:
 - Source-rock potential (3% to 4% for Middle-Upper Jurassic source)
 - Cutoff porosities and Net estimates in reservoir layers (5% to 10%, NTG 0.5 to 0.8)
 - HC migration parameters (capillary pressures for seals (10, 50,100 bars), minimal HC saturation for HC movements, (2% to 5%)
 - Saturation (10 to 30%) or concentration (0.2, 0.5 or 1 T HC / m2) parameters cutoffs in traps

CATEGORY of Prospective Oil GAS

(1) UNRISKED Volumes in Place Best guess P50 (incl. Possible + probable discovered)

	TOTAL OIL	TOTAL GAS		
and				
		Billion Cu		
	Billions bbl	Meter		
e				
-	26.0	7731		

Petroleum system chart offshore Israel **Oil - Gas Potential Levant basin**

Conclusions

- Petroleum System modeling in the Levant Basin offshore is used to constrain some key factors associated with HC generation/migration/accumulation processes
- The modeling proposes a consistent scheme of early gas charge in Tertiary accumulations, resulting from the progressive expulsion from lean shaly source-rocks
- Middle to Upper Jurassic source rocks reached high level of maturation and likely charge overlaying Lower Cretaceous sands in the deep part of the basin
- Upper Cretaceous source rocks are only partially mature
- There is high level of compartmentalization and limited connection between the deep, thermogenic systems and the shallower biogenic systems
- Large unrisked volumes of oil and gas are predicted by modeling

