Interaction between cover deformation and pre-salt seamounts in passive margins:

Physical models applied to the Northwest and Eastern Mediterranean basins

O. Ferrer¹, O. Vidal-Royo², O. Gratacós¹, E. Roca¹ & J.A. Muñoz¹

¹ Geomodels Research Institute (University of Barcelona) ² Terractiva Consulting SL (Barcelona)

geomodels

Contents

- Overview A: passive margins with postrift salt and modelling rationale
- Experimental setup A: gravitational gliding
- Experimental results A
 - Experiment 3
 - Experiment 5
 - Experiment 6
- Comparison with seismic examples
- Overview B: active margins with compressional salt tectonics above pre-salt reliefs
- Experimental setup B: salt deformation as a consequence of thrust wedge advance
- Experimental results B: the Cyprus Arc and the Eratosthenes Seamount
- Conclusions

Passive margins with post-rift salt

- Broad zones of deformation with horizontal translation of the cover by gravitational failure
- Linked system of thin-skinned updip extension and downdip contraction
- Third intermediate domain where the cover is passively translated downdip above the salt

Regional structure (Gulf of Lions, Western Mediterranean)

- Present day margin architecture reflect the post-MSC evolution (progradation, subsidence, compactation & salt tectonics)
- Upper part deeply eroded during MSC (Margin Erosion Surface)
- Three-phased evaporite sedimentation on the deep basin (LU, MU & UU + CU) during the MSC

terractiva

institut de recerca

Deep basin structure (Western Mediterranean)

- Post-rift Messinian salt acts as a regional dêcollement along the Western Mediterranean
- Upslope extension (listric growth faults) accommodated by downslope shortening (pillows & diapirs).

Virtual Seismic Atlas, Rhone Fan Profile RM01

West Corsica margin (Western Mediterranean)

- Lower to Mid Miocene volcanic edifices limiting the evaporitic basin
- No critical control on the evaporites deformation

Provençal basin (Western Mediterranean)

- Post-rift Messinian salt acts as a regional dêcollement along the Provençal Basin but....
- Lower to Mid Miocene volcanic edifices with a NNE-SSW trend located on the upper extensional domain of the saltbearing passive margin

Provençal basin (Western Mediterranean)

- The apex of these reliefs can be located below, inside or above the salt units
- These reliefs strongly controls the gravitational failure of the margin, developing secondary structures superimposed to the lower part of the extensional & the translational domain
- Unfortunately 2D seismic coverage & quality is not enough to recognize the 3D geometry of the secondary structures controlled by these reliefs

Rationale

- Thin-skinned gravitational gliding & spreading drive deformation on saltbearing passive margins developing a characteristic structural zonation with three major domains (extensional, translational & contractional), but...
 - What happens during gravitational failure when the margin includes pre-salt "reliefs"?
 - Can these "reliefs" modify the architecture of the margin?
 - In that case, what are the main factors intrinsic to the "reliefs" that control the kinematic evolution of the margin?
 - How the rheology of the salt layers controls the style and distribution of intrasalt strain?

Geomodels analogue modeling laboratory

- Scaled analogue modelling laboratory of upper crustal fault systems since 2012
- http://www.ub.edu/geomodels/Obj_eng_Lab_mod.html

Experimental setup

Experimental approach

Tested parameters

- Position of the seamount apex vs. salt units
- Seamount height (2.1; 2.8; 3,5; 4,2; 5.5 cm)
- Different degrees of gravitational gliding (6 & 18 hours)
- Orientation of the seamount vs. the margin dip

Mechanical stratigraphy

Experimental setup

Experimental approach

Mechanical stratigraphy

Experimental results

Baseline model (without seamount) – (Exp. 0)

Experimental results (Exp. 5 – after 6 hours)

- Apex of the seamount located above the salt units
- Thrusting updip & growth listric faults with rollovers & diapirism downdip

174

Top view

Experimental results (Exp. 3 – after 18 hours)

First stage similar to the previous model G

terractiva

Second stage with cover overthrusting & basinwards gliding

institut de recerca

Experimental results (Exp. 6 – after 6 hours)

- Seamount apex above the regional at the beginning of the gliding
- Buttressing more effective \rightarrow thrust, backthrust & piggyback basin
- Early basinwards diapirism

- Upslope extension: listric faults, rollovers & polymer rollers
- Downslope contraction: imbricate thrust system detached on the polymer in the lower pinchout

- Upslope extension: listric faults, rollovers & polymer rollers
- Downslope contraction: imbricate thrust system detached on the polymer in the lower pinchout

- Upslope extension: listric faults, rollovers & polymer rollers
- Downslope contraction: imbricate thrust system detached on the polymer in the lower pinchout

- Upslope extension: listric faults, rollovers & polymer rollers
- Downslope contraction: imbricate thrust system detached on the polymer in the lower pinchout

- Upslope extension: listric faults, rollovers & polymer rollers
- Downslope contraction: imbricate thrust system detached on the polymer in the lower pinchout

- Upslope extension: listric faults, rollovers & polymer rollers
- Downslope contraction: imbricate thrust system detached on the polymer in the lower pinchout

- Upslope extension: listric faults, rollovers & polymer rollers
- Downslope contraction: imbricate thrust system detached on the polymer in the lower pinchout

- Upslope extension: listric faults, rollovers & polymer rollers
- Downslope contraction: imbricate thrust system detached on the polymer in the lower pinchout

3D structure & architecture

geomodels

institut de recerca

Kinematic evolution of the structures associated to the seamount

Initial setup (t₀)

- Flat topography
- Seamount higher than the regional
- Rig tilting 4,5° basinwards
- Gravitational failure

Experiments comparison

Comparison with seismic examples

institut de recerca

Contents

- Overview A: passive margins with postrift salt and modelling rationale
- Experimental setup A: gravitational gliding
- Experimental results A
 - Experiment 3
 - Experiment 5
 - Experiment 6
- Comparison with seismic examples
- Overview B: active margins with compressional salt tectonics above pre-salt reliefs
- Experimental setup B: salt deformation as a consequence of a thrust wedge advance
- Experimental results B: the Cyprus Arc and the Eratosthenes Seamount
- Conclusions

Overview B: salt tectonics in active margins above large pre-salt relief

A'-A

Reiche et al., 2016

Unit 3

Unit 2

SW-NE

Reiche et al., 2016

Experimental setup B

Experimental approach

Mechanical stratigraphy

Tested parameters

- Shape of the seamount (height & geometry)
- Geometry of a rigid backstop
- Salt thickness & stratigraphy
- Different degrees of shortening
- Syn-tectonic sedimentation

Experimental results B: 3D view

Experimental results B: section view

Baseline section (without seamount)

Section with seamount (central)

Experiment ESM01 topography evolution

Height above regional (mm)

Experiment ESM01 topography evolution

Comparison with natural examples Experiment oblique view

09

Cyprus arc & Eratosthenes seamount

Reiche et al., 2015

Contents

- Overview A: passive margins with postrift salt and modelling rationale
- Experimental setup A: gravitational gliding
- Experimental results A
 - Experiment 3
 - Experiment 5
 - Experiment 6
- Comparison with seismic examples
- Overview B: active margins with compressional salt tectonics above pre-salt reliefs
- Experimental setup B: salt deformation as a consequence of a thrust wedge advance
- Experimental results B: the Cyprus Arc and the Eratosthenes Seamount
- Conclusions

Conclusions

- Using an experimental approach, this research shows that pre-salt "reliefs" in passive/active margins with presence of salt can develop interference structures that modify the regional architecture of the margin
- The development of these structures is influenced by the geometry and position of the seamount apex respect the salt units (heigh of the reliefs)
- Two main evolutionary stages have been identified in the Northwest Mediterranean:
 - First episode without overthrusting of the cover

Second episode with cover overthrusting & associated gravitational gliding

 South of the Cyprus Arc the Eratosthenes Seamount acts as a buttress that enhances allochthonous salt inflation, fracturing and compartmentalization of the supra-salt sequence in multiple domains: fracture and pervasive compressional folding in the north, strike-slip around the seamount and extensional

Conclusions

- South of the Cyprus Arc the Eratosthenes Seamount acts as a buttress that enhances fracturing and compartmentalization of the supra-salt sequence in multiple domains:
 - Fracture and pervasive compressional folding in the north,
 - Strike-slip around the seamount ,

Complex interference folding patterns from the seamount towards the East and South

The lateral transition from the Seamount towards the neighbouring basin is accommodated through a region of complex deformation in which strike-slip deformation gives room to arcuate-trend salt cored detachment folding

Acknowledgements

We gratefully acknowledge –

- GEOMODELS Research Institute & facilities
- SALTECRES project (CGL2014-54118-C2-1-R)
- Grup de Recerca de Geodinàmica i Anàlisi de Conques (2014SRG467)
- European Regional Development Fund (Ministerio de Ciencia e Innovación of the Spanish Government)
- Statoil
- Schlumberger & Midland Valley for kindly providing part of the software (Petrel & Move) for this research as an educational grant program

Thanks for your attention

Gravitational failure structures on asphalt heated by the Sun (Budapest)

