

#### Cost Allocation Kelly R. Derksen, Consultant On Behalf of Kelly Derksen & Darren Rainkie Consulting

Monday, March 2nd, 2020 - Wednesday, March 4th, 2020 | Delta Ottawa City Centre | Ottawa, ON

### **OVERVIEW**



What?

Why?

When?

Who?

How?

### **Core Steps of Utility Ratemaking Process**





# WHAT?

- Allocation of the revenue requirement to various customer classes in a fair and equitable manner
- Challenges
  - Most costs are common (shared)
  - No one definition of "cost":
    - Revenue Requirement (embedded/historical cost)
    - Replacement cost
    - Incremental/marginal cost
    - Market value
- No one right answer—good judgment has to prevail

### WHAT?



## WHAT?

#### **Types of Cost Allocation Studies**



# WHY?

Why does the Utility care about Cost Allocation?

- Indifferent once Revenue Requirement established?
- Why not let customers/intervening parties determine?
- Provides a benchmark by which the adequacy of rates is assessed by class
- Regulators are mandated by statue to establish just and reasonable (fair and equitable) rates for utilities
- Regulation a proxy for competition:
  - COS attempts to compile data in such a way to reveal economic importance of services
  - As close as possible reflect competitive market conditions

# WHY?

If we simply assigned costs on a proportionate basis consider:

- IT department costs \$100,000/mth
- 5 departments are provided service on an equal basis
- Current allocation is \$20,000/mth to each

| <u>Dept.</u> | Outside Cost | <u>Charge</u> | <u>Result</u>      |
|--------------|--------------|---------------|--------------------|
| A            | \$18,000     | \$20,000      | Unhappy, wants out |
| В            | \$22,000     | \$20,000      | Нарру              |
| С            | \$30,000     | \$20,000      | Нарру              |
| D            | \$30,000     | \$20,000      | Нарру              |
| E            | \$30,000     | \$20,000      | Нарру              |
|              |              |               |                    |
|              |              |               |                    |

Total \$130,000 \$100,000

# WHY?

|       |              |               |               |               |               |          | <b>&gt;</b> |
|-------|--------------|---------------|---------------|---------------|---------------|----------|-------------|
|       |              | <u>Charge</u> | <u>Charge</u> | <u>Charge</u> | Charge        |          | 20          |
| Dept. | Outside Cost | 1st Iteration | 2nd Iteration | 3rd Iteration | 4th Iteration | 6/2      |             |
|       |              |               |               |               | 11/19         |          | 20          |
| А     | \$18,000     | \$20,000      | exits         |               | 2             |          |             |
| В     | \$22,000     | \$20,000      | \$25,000      | exits         |               | 26 1     | Lo          |
| С     | \$30,000     | \$20,000      | \$25,000      | \$33,333      | exits         | <b>0</b> | ~0          |
| D     | \$30,000     | \$20,000      | \$25,000      | \$33,333      | exits (       | YI       | E T         |
| E     | \$30,000     | \$20,000      | \$25,000      | \$33,333      | exits         |          | 10x         |
|       |              |               |               |               |               |          | 5           |
| Total | \$130,000    | \$100,000     | \$100,000     | \$100,000     | 5             | × 1      |             |
|       |              |               |               |               |               | T        | 7.          |

0,



# WHEN?

When/how often should a cost allocation study be prepared?

- Are results the <u>primary</u> vehicle for determining the overall cost responsibility and rates for customer classes or strict adherence?
  - Zone of Reasonableness or Unity?
- Relatively stable operating conditions or fluid/volatile conditions?
  - Significant changes in customers, volumes, demand
  - Large capital additions?
  - Other IFRS, significant deferral accumulations
- PBR?
- Past practice
- Legislated requirement/PUB direction

## WHO?





# HOW?

- Traditional ratemaking goals:
  - Recovery of Revenue Requirement
  - Fairness and Equity
  - Economic Efficiency
  - Rate Stability and Gradualism
  - Simplicity/practicality



• Other: social and environmental policy has, over the last couple of decades, become comingled with the regulation of utilities

# HOW?

#### Cost Allocation Goals?

- Postage Stamp ratemaking?
- Cost Causation
  - Is "primary" objective is to select a cost allocation method which best represents cost causation or "sole" objective?
  - Having regard for why costs are incurred
  - Intent/role of investment

COS, like any project, it is important to begin with an end in mind

- A well-designed cost allocation study strikes a balance of a utility's ratemaking objectives of greatest significance
- Cost Allocation methodology often not right or wrong per se—but proper or improper measured in terms of how it aids in achieving ratemaking objectives
- Transparency important



#### HOW?



# Key Question to be asked at each step in process:

What caused costs to be incurred?

# Step 1: Functionalization

# Purpose is to divide costs into broad functions, activities or services according to the operating functions of the utility

- To ensure that customer classes only allocated costs of functions used
- Accounting records generally organized in terms of functions
- Directly assign where possible

Common functions:

- Production (Gas supply/Molecule)
- Pipeline
- Storage
- Transmission
- Distribution
- Onsite

Does investment perform more than one function?

- Interface between functions
- What is role of a Town Border Station?

General plant?

- General plant supports indirect labour, indirect labour supports direct labour
- In proportion with functionalization of assets



17

Step 1: Functionalizing the Revenue Requirement

- Purchased Gas Costs
- Operations, Maintenance, Admin (OM&A)
- Depreciation and Amortization (incl. DSM)
- Financing Charges
  - Return on Equity (ROE)
    - Taxes

Capital

related

costs

• Misc. Revenue

#### Step 1: Functionalization

- Usually, rate-base (capital expenditures) is functionalized first
- Then the expense components (i.e revenue requirement)

#### -• Land

PPE less Accum Dep

- Transmission Plant (e.g. lines and substations)
- Distribution Plant (e.g lines and substations)
- General Plant (e.g. vehicles, computers, SCADA)
- Meters & Regulation
- Working capital
- AFUDC and/or CWIP etc.

# Step 1: Functionalizing Rate Base



#### Step 1: Functionalizing Revenue Requirement



### Step 2: Classification

# Classification is the process of further separating the functionalized costs by the primary driver for that cost:

- What are the drivers of cost i.e. what are the costs sensitive to?
- Primary Cost Classifications:

**Volume** – costs that vary with energy required by customers **Demand** – costs incurred to meet energy needs at peak periods i.e. costs incurred to meet a customer's energy needs not over the year, but in every hour of the year

**Customer numbers** – cost incurred to attach a customer to the system

Methodology chosen gives consideration to:

- Why investment made/Intent of infrastructure/role of infrastructure
- What are goals of cost allocation and overall in ratemaking
- How methodology corresponds to the utility's planning process
- Data availability
- What others in the industry do
- How do results compare to current significant difference may be met with resistance

# Step 2: Classification Examples

#### **Customer-related costs**

- Billing
- Customer calls
- Postage stamps
- Meters, regulators these costs show up in Rate Base and will be used to drive the classification of Depreciation, O&M, Finance & Net Income

#### Commodity-related costs

- Gas Supply (molecules)
- Compressor fuel
- Unaccounted For Gas?

#### Demand-related costs:

- Transmission Mains (Rate Base)
- Distribution Mains (Rate Base)
- TCPL fees
- Storage



## Step 2: Classification

#### Classification of mains tends to be highly controversial

Two types of main costs:

Transmission - a customer not directly attached

- Distribution what purpose does Distribution Main serve?
  - Provides sufficient capacity to meet peak requirements of customer
  - Sufficient length to attach customer
  - Cost driven only by size of plant, therefore costs treated entirely as demand?

Common methods for splitting the demand and customer related components of distribution mains:

**Minimum Plant** 

• Provides an estimate of the minimum sized plant needed to connect customers to the transmission system

Zero Intercept

• Estimates the cost of connecting customers to the transmission system using a hypothetical zero diameter pipe 24

### Step 2: Classification of Functionalized Costs





Allocation is the process of allocating revenue requirement among rate classes What is a rate class?

- A relatively homogeneous group of customers with similar service characteristics
- Characteristics include annual use, load (demand), end use, delivery pressure, metering
- Can depend on goals to be achieved (i.e residential vs. similar small commercial)

Examples:

- Residential
- Commercial
- Industrial firm
- Industrial interruptible

Costs incurred for a customer or rate class known as dedicated facilities and should be directly assigned

Costs incurred that do not serve particular customers/classes should be excluded from the allocation of these costs

Costs are allocated to customer classes:

- 1. Customer count—weighted or unweighted
- 2. Annual throughput (volume)—weighted or unweighted
- 3. Peak Demand (capacity)

Examples of Demand methods include:

- CP: Coincident Peak
- NCP: Non-Coincident Peak
- Peak and Average

#### **CP (Coincident Peak)**

- System designed to meet maximum peak requirements
- Allocates demand/capacity costs based on class use at system peak
- Does not allocate any demand/capacity costs who do not use energy during system peak – eg: interruptible customers

#### NCP (Non-Coincident Peak)

- Allocates capacity costs on the basis of each customer class' peak
- Inherent assumption is a class is served on a stand-alone basis

#### Peak & Average

 Capacity costs allocated on a 2-part formula that recognizes both average use of capacity (energy) and use at system peak

#### **Other Allocators:**

Internally Derived

– Labour

**Special Studies** 

- Call center costs may be allocated based on call data
- Late payments may be allocated based on historical review of revenue collection
- Meter/Service Line Study

The following criteria should be used to determine the appropriateness of an allocation method:

- The method should reflect the actual planning and operating characteristics of the utility's system
- The method should reflect cost causation, i.e., should be based on the actual activity that the drives a particular cost and on a rate classes' share of that activity
- The method should recognize customer class characteristics such as load demands, peak period consumption, number of customers, and directly assignable costs
- The method should produce stable results on a year-to-year basis
- Customers who benefit from the use of the system should also bear some responsibility for the costs of utilizing the system



# **COST ALLOCATION - RESULTS**

- Are the outcomes expected?
- If results counterintuitive, why?
- Beware of unintended results
- What are the major drivers of the changes?
- Are results consistent with Corporate direction?
  - Stakeholders-i.e internal, regulator, public
- Start building the Story
  - be aware of heavy academics
- What are the headline issues?

# **COST ALLOCATION - RESULTS**

# Are cost allocation results the primary vehicle for determining the overall cost responsibility and rate form for customer classes?

- Cost allocation is a guide, not a prescription
  - Results provide a benchmark by which both overall revenue requirement by class and rate forms are evaluated
  - Cost allocation cannot identify, for certain, the true cost of provide services (common costs)
  - Fairness and Equity and other ratemaking objectives influence utility rates
  - Often utilities accept a range of revenue vs. cost known as a "Range of Reasonableness" or "Zone of Reasonableness" in setting rates

# **Questions or Clear?**



## Appendix

#### Rainkie-Derksen Consulting Practice Overview

CVs: www.pubmanitoba.ca/v1/proceedings-decisions/applcurrent/pubs/2019-centra-gra/cac-ex/cac-intervenorapplication.pdf

#### **Darren Rainkie Consulting**

Mr. Darren Rainkie, CPA, CA, CBV Office: 204.837.7814 Mobile: 204.782.5877 Email: <u>darrenrainkie@gmail.com</u> 39 Edenwood Pl, Winnipeg, MB R3X 0E5

#### **Kelly Derksen Consulting**

Ms. Kelly Derksen, BSc., CPA, CMA Office: 204.667.7671 Mobile: 204.782.4204 Email: <u>kderksenconsulting@gmail.com</u> 14 Timberwood PI, East St. Paul, MB R2E 0M4

#### STRATEGIC & INNOVATIVE REGULATORY SOLUTIONS FOR THE EVOLVING CHALLENGES OF REGULATED ENTERPRISES

#### **EXPERIENCE HIGHLIGHTS**

#### **PRACTICE OVERVIEW**

Executive level Experience

- Strategic Plan Development
- Leading & developing senior level professionals
- Successfully managing multiple initiatives/projects simultaneously

#### **Financial Management**

Broad senior level experience:

- Operating & Capital Budgeting
- Financial Forecasting
- Corporate Finance
- Financial Reporting
- Corporate Risk Management

#### Rates & Regulatory Expertise

- Policy & Strategy
- Planning & Process Management
- Revenue Requirement
- Cost of capital/Capital Structure
- Major Capital Project Reviews
- Cost allocation & Rate design
- Testimony

#### Leadership & Communication

- Providing Policy Direction
- Leading, collaborating in crossdisciplinary teams
- Effective communication with internal and external stakeholders

Through an energy regulation consulting practice that was founded in 2017 – we offer services to a wide range of clients that participate in and are impacted by regulatory proceedings and decisions including applicants, consumer groups, regulatory tribunals, government agencies and energy industry participants in general. Our focus is primarily in the electricity and natural gas sectors.

We have a unique combination of experience in energy regulation (55 years), utility and financial management which was developed through decades of prior employment in a large crown-owned integrated electricity and natural gas distribution utility, a privately-owned natural gas distribution utility, and through providing advisory services to a provincial regulator and other clients.

We leverage from our decades of hands-on senior level utility and regulatory experience, passion for the energy sector, and our collaborative approach to develop strategic and innovative regulatory solutions that are broad-based, sustainable and practical - for clients - so that they can meet the evolving challenges of regulated enterprises.

We provide a full suite of services that spans the entire regulatory cycle depicted below:

3

6

#### **Rainkie-Derksen Practice Overview Continued**



#### **REGULATORY SERVICES**

- Strategy development and case planning
- Application and evidence preparation
- Stakeholder engagement and dispute resolution processes
- Witness training and preparation
- Discovery and hearing process managemen
- Presentation of expert testimony
- Evidence evaluation
- Cross-examination and argument strategy and content
- Regulatory decision drafting
- Compliance filing preparation and evaluatic
- Process improvement recommendations



# IMPORTANT INDUSTRY CONCEPTS

- Annual Load (volumes)
- Load Factor
- Demand
  - Peak Day / Peak period (electric)
  - Coincident (system)
  - Non Coincident (class)
  - Design Day



### DEMAND/LOAD FACTOR/ANNUAL VOLUME



# CLASSIFY – ZERO INTERCEPT METHOD

Example:

Classification of distribution plant between capacity and customer using

zero intercept method where total distribution main = \$300 000

Data

|       |        | COST    | \$/M |
|-------|--------|---------|------|
| (mm)  | (171)  | (\$)    |      |
| 10    | 1,000  | 10,000  | 10   |
| 20    | 6,000  | 90,000  | 15   |
| 30    | 10,000 | 200,000 | 20   |
| Total | 17,000 | 300,000 |      |

## CLASSIFY

**Distribution Customer cost** 



Using a regression, we calculate the cost of a distribution main with zero diameter to be 5/M

**Distribution Customer cost = 17,000M X \$5/M = \$85 000** 

## CLASSIFY

**Distribution Capacity cost** 

Distribution Main =

Distribution Customer cost +Distribution Capacity cost

\$300 000 = \$85 000 + Distribution Capacity cost **Distribution Capacity cost = \$215 000** 

Distinction between Non-coincident peak and Coincident peak:

- If a peak is observed for each customer, the term *non-coincident peak* is used, as each peak does not necessarily occur on the same day.
- If the volumes of all customers are added and a peak is calculated, the term *coincident peak* is used.

|            |       | VOIGHIN |       |       |                     |
|------------|-------|---------|-------|-------|---------------------|
|            | Day 1 | Day 2   | Day 3 | Day 4 | Non-coincident peak |
| CUSTOMER 1 | 10    | 7       | 6     | 20    | 20                  |
| CUSTOMER 2 | 15    | 25      | 4     | 16    | 25                  |
| TOTAL      | 25    | 32      | 10    | 36    |                     |

COINCIDENT PEAK FOR THE SYSTEM = 36

# EXAMPLE

## FUNCTIONALIZE

Example Step 1: Functionalization

|                           |            |        |         | ction     | Š       | .¢      | nission | ution          |         |
|---------------------------|------------|--------|---------|-----------|---------|---------|---------|----------------|---------|
| Acct Description          | Total (\$) | Direct | Derived | Produc    | Pipelin | Storagt | Transit | Distrib        | Onsite  |
| Rate Base                 |            |        |         |           |         |         |         |                |         |
| Transmission Mains        | 200.000    | x      |         |           |         |         | 200.000 |                |         |
| Distribution Mains        | 300.000    | x      |         |           |         |         | 200,000 | 300.000        |         |
| Meters                    | 50,000     | х      |         |           |         |         |         | ,              | 50,000  |
| Services                  | 100,000    | х      |         |           |         |         |         |                | 100,000 |
| Total                     | 650,000    |        |         |           |         |         | 200,000 | 300,000        | 150,000 |
| Revenue Requirement       |            |        |         |           |         |         |         |                |         |
| Molecules                 | 2,000,000  | х      |         | 2,000,000 |         |         |         |                |         |
| TCPL Demand Charges       | 200,000    | х      |         |           | 200,000 |         |         |                |         |
| Storage Capacity Charge   | 100,000    | х      |         |           |         | 100,000 |         |                |         |
| O & M                     |            |        |         |           |         |         |         |                |         |
| Billing                   | 20,000     | х      |         |           |         |         |         |                | 20,000  |
| Bad Debt                  | 10,000     | х      |         |           |         |         |         |                | 10,000  |
| System Integrity          | 20,000     |        | Х       |           |         |         | 8,000   | 12,000         |         |
| Return                    | 50,000     |        | х       |           |         |         | 15,400  | <u>23,1</u> 00 | 11,500  |
| Total Revenue Requirement | 2,400,000  |        |         | 2,000,000 | 200,000 | 100,000 | 23,400  | 35,100         | 41,500  |

## FUNCTIONALIZE

|                  |        |            |             | missi   | on      | 0       |         |
|------------------|--------|------------|-------------|---------|---------|---------|---------|
| Acct Description | \$     | Allocation |             | Transi  | Distrib | Onsite  | Total   |
| System Integrity | 20,000 | Mains      |             |         |         |         |         |
|                  |        |            | Trans Mains | 200,000 | -       | -       | 200,000 |
|                  |        |            | Dist Mains  | -       | 300,000 | -       | 300,000 |
|                  |        |            | Total       |         |         |         | 500,000 |
|                  |        |            | %           | 40%     | 60%     |         | 100%    |
|                  |        |            | Allocation  | 8,000   | 12,000  |         | 20,000  |
| Return           | 50,000 | Rate Base  |             |         |         |         |         |
|                  |        |            | Trans Mains | 200,000 |         |         | 200,000 |
|                  |        |            | Dist Mains  |         | 300,000 |         | 300,000 |
|                  |        |            | Meters      |         |         | 50,000  | 50,000  |
|                  |        |            | Services    | -       | -       | 100,000 | 100,000 |
|                  |        |            | Total       | 200,000 | 300,000 | 150,000 | 650,000 |
|                  |        |            | %           | 31%     | 46%     | 23%     | 100%    |
|                  |        |            | Allocation  | 15,400  | 23,100  | 11,500  | 50,000  |

## CLASSIFY

Example Step 2: Classification

| Acct Description        | Direct | Derived | Capacity | commodity | customet |
|-------------------------|--------|---------|----------|-----------|----------|
|                         |        |         |          |           |          |
| Rate Base               |        |         | 1000     |           |          |
| I ransmission Mains     | ~      |         | 100%     |           |          |
| Distribution Mains      |        | ~       | x%       |           | x%       |
| Meters                  | ~      |         |          |           | 100%     |
| Services                | ~      |         |          |           | 100%     |
| Revenue Requirement     |        |         |          |           |          |
| Molecules               | ~      |         |          | 100%      |          |
| TCPL Demand Charges     | ~      |         | 100%     |           |          |
| Storage Capacity Charge | ~      |         | 100%     |           |          |
| O & M                   |        |         |          |           |          |
| Billing                 | ~      |         |          |           | 100%     |
| Bad Debt                | ~      |         |          |           | 100%     |
| System Integrity        |        | ~       | x%       |           | x%       |
|                         |        |         |          |           |          |
| Return                  |        | ~       | x%       |           | x%       |

## CLASSIFY

Example Step 2: Classification

|                         |            |        |         | citty   | modity    | omer    |
|-------------------------|------------|--------|---------|---------|-----------|---------|
| Acct Description        | Total (\$) | Direct | Derived | Capar   | Comi      | CUSIC   |
| Rato Raso               |            |        |         |         |           |         |
| Transmission Mains      | 200.000    | x      |         | 200.000 |           |         |
| Distribution Mains      | 300.000    | A      | x       | 215.000 |           | 85.000  |
| Meters                  | 50,000     | х      |         | ,       |           | 50,000  |
| Services                | 100,000    | х      |         |         |           | 100,000 |
| Total                   | 650,000    |        |         | 415,000 |           | 235,000 |
| Revenue Requirement     |            |        |         |         |           |         |
| Molecules               | 2,000,000  | х      |         |         | 2,000,000 |         |
| TCPL Demand Charges     | 200,000    | х      |         | 200,000 |           |         |
| Storage Capacity Charge | 100,000    | х      |         | 100,000 |           |         |
| O & M                   |            |        |         |         |           |         |
| Billing                 | 20,000     | х      |         |         |           | 20,000  |
| Bad Debt                | 10,000     | х      |         |         |           | 10,000  |
| System Integrity        | 20,000     |        | х       | 16,600  |           | 3,400   |
| Return                  | 50,000     |        | х       | 32,000  |           | 18,000  |
| Total                   | 2,400,000  |        |         | 348,600 | 2,000,000 | 51,400  |

## ALLOCATE - DATA

Example Step 3: Allocation Factors

|                                       | Residential | Commercial | Industrial<br>(Firm) | Industrial<br>Interruptible | Total     |
|---------------------------------------|-------------|------------|----------------------|-----------------------------|-----------|
| <u>Data</u>                           |             |            |                      |                             |           |
| Annual Customers                      | 80          | 15         | 4                    | 1                           | 100       |
| Annual Volume (M <sup>3</sup> )       | 1,000       | 6,000      | 4,000                | 5,000                       | 16,000    |
| Revenues (\$)                         | 160,000     | 800,000    | 500,000              | 640,000                     | 2,100,000 |
| Coincident Peak (M <sup>3</sup> )     | 10          | 20         | 16                   | 0*                          | 46        |
| Non-Coincident Peak (M <sup>3</sup> ) | 10          | 20         | 21                   | 15                          | 66        |
| Allocation Factors                    |             |            |                      |                             |           |
| Customer                              | 80%         | 15%        | 4%                   | 1%                          | 100%      |
| Commodity                             | 6%          | 38%        | 25%                  | 31%                         | 100%      |
| CP (Dist Mains)                       | 22%         | 43%        | 35%                  | 0%                          | 100%      |
| NCP (Trans Mains)                     | 15%         | 30%        | 32%                  | 23%                         | 100%      |

\*For an interruptible customer, we use a coincident peak of zero as the customer is interrupted during peak periods

## ALLOCATORS

Example Step 3: Allocation

|                         |            |             |            | Industrial | Industrial    |
|-------------------------|------------|-------------|------------|------------|---------------|
| Acct Description        | Total (\$) | Residential | Commercial | (Firm)     | Interruptible |
|                         |            |             |            |            |               |
| Rate Base               |            |             |            |            |               |
| Transmission Mains      | 200,000    | NCP         | NCP        | NCP        | NCP           |
| Distribution Mains      | 300,000    | CP/Cust#    | CP/Cust#   | CP/Cust#   | CP/Cust#      |
| Meters                  | 50,000     | Cust#       | Cust#      | Cust#      | Cust#         |
| Services                | 100,000    | Cust#       | Cust#      | Cust#      | Cust#         |
| Total                   | 650,000    |             |            |            |               |
|                         |            |             |            |            |               |
| Revenue Requirement     |            |             |            |            |               |
| Molecules               | 2,000,000  | Commodity   | Commodity  | Commodity  | Commodity     |
| TCPL Demand Charges     | 200,000    | NCP         | NCP        | NCP        | NCP           |
| Storage Capacity Charge | 100,000    | CP          | CP         | CP         | CP            |
|                         |            |             |            |            |               |
| O & M                   |            |             |            |            |               |
| Billing                 | 20,000     | Cust#       | Cust#      | Cust#      | Cust#         |
| Bad Debt                | 10,000     | Cust#       | Cust#      | Cust#      | Cust#         |
| System Integrity        | 20,000     | T/D Mains   | T/D Mains  | T/D Mains  | T/D Mains     |
|                         |            |             |            |            |               |
| Return                  | 50,000     | Rbase       | Rbase      | Rbase      | Rbase         |
| Total                   | 2,400,000  |             |            |            |               |

**Allocation Details** 

|                       |              |             |            | Industrial | Industrial    |
|-----------------------|--------------|-------------|------------|------------|---------------|
|                       |              | Residential | Commercial | (Firm)     | Interruptible |
| Transmission Mains    | NCP          | 15%         | 30%        | 32%        | 23%           |
| Capacity \$           | 200,000      | 30,000      | 61,000     | 64,000     | 45,000        |
|                       |              |             |            |            |               |
| Distribution Mains    | CP           | 22%         | 43%        | 35%        | 0%            |
| Capacity \$           | 215,000      | 47,000      | 93,000     | 75,000     | -             |
| Distribution Mains    | Customer #   | 80%         | 15%        | 4%         | 1%            |
| Customer \$           | 85,000       | 68,000      | 13,000     | 3,000      | 1,000         |
| Distribution Mains    | Total Alloc. | 115,000     | 106,000    | 78,000     | 1,000         |
| Meters                | Customer #   | 80%         | 15%        | 4%         | 1%            |
| Meters \$             | 50,000       | 40,000      | 7,500      | 2,000      | 500           |
|                       |              |             |            |            |               |
| Tran/Dist Mains RBase |              | 145,000     | 167,000    | 142,000    | 46,000        |
| System Integrity      | Mains%       | 29%         | 33%        | 28%        | 9%            |
| System Integrity \$   | 20,000       | 5,800       | 6,700      | 5,700      | 1,800         |
|                       |              |             |            |            |               |
| Total Rate Base       |              | 265,000     | 189,500    | 148,000    | 47,500        |
| Return                | RBase %      | 41%         | 29%        | 23%        | o 7%          |
| Return \$             | 50,000       | 20,400      | 14,500     | 11,400     | 3,700         |

Example: Peak and Average Calculation (used in Manitoba)

|                       | Residential | Commercial | Industrial (Firm) | Total Firm | Interruptible | Total  |
|-----------------------|-------------|------------|-------------------|------------|---------------|--------|
| Annual Volume         | 1,000       | 6,000      | 4,000             | 11,000     | 5,000         | 16,000 |
| Peak Day              | 10          | 20         | 16                | 46         | 0             | 46     |
| % of Peak Day         | 22%         | 43%        | 35%               | 100%       |               |        |
| Load Factor*          | 27%         | 82%        | 68%               | 66%        |               |        |
| % of Annual Volume    | 6%          | 38%        | 25%               |            | 31%           | 100%   |
| Peak & Average**      | 12%         | 40%        | 28%               |            | 20%           | 100%   |
| **Peak & Average Calc |             |            |                   |            |               |        |
| System Load Factor    | 66%         | 66%        | 66%               |            | 66%           |        |
| % of Annual Volume    | 6%          | 38%        | 25%               |            | 31%           |        |
| Average               | 4%          | 25%        | 16%               |            | 20%           |        |
| 1-System Load Factor  | 34%         | 34%        | 34%               |            | 34%           |        |
| % of Peak Day         | 22%         | 43%        | 35%               |            | 0%            |        |
| Peak                  | 7%          | 15%        | 12%               |            | 0%            |        |
| Peak & Average        | 12%         | 40%        | 28%               |            | 20%           |        |

\* Load Factor: Annual Volume/365/PeakDay Total: 11000/365/46 = 66% Res: 1000/365/10 = 27%

Example Step 3: Allocation

|                                |            |             |            | Industrial | Industrial    |
|--------------------------------|------------|-------------|------------|------------|---------------|
| Acct Description               | Total (\$) | Residential | Commercial | (Firm)     | Interruptible |
|                                |            |             |            |            |               |
| Rate Base                      |            |             |            |            |               |
| Transmission Mains             | 200,000    | 30,000      | 61,000     | 64,000     | 45,000        |
| Distribution Mains             | 300,000    | 115,000     | 106,000    | 78,000     | 1,000         |
| Meters                         | 50,000     | 40,000      | 7,500      | 2,000      | 500           |
| Services                       | 100,000    | 80,000      | 15,000     | 4,000      | 1,000         |
| Total                          | 650,000    | 265,000     | 189,500    | 148,000    | 47,500        |
| Revenue Requirement            |            |             |            |            |               |
| Molecules                      | 2,000,000  | 125,000     | 750,000    | 500,000    | 625,000       |
| TCPL Demand Charges            | 200,000    | 30,000      | 61,000     | 64,000     | 45,000        |
| Storage Capacity Charge        | 100,000    | 22,000      | 43,000     | 35,000     | -             |
| O & M                          |            |             |            |            |               |
| Billing                        | 20,000     | 16,000      | 3,000      | 800        | 200           |
| Bad Debt                       | 10,000     | 8,000       | 1,500      | 400        | 100           |
| System Integrity               | 20,000     | 5,800       | 6,700      | 5,700      | 1,800         |
| Return                         | 50,000     | 20,400      | 14,500     | 11,400     | 3,700         |
| Total                          | 2,400,000  | 227,200     | 879,700    | 617,300    | 675,800       |
| Current Revenue                | 2.100.000  | 160.000     | 800.000    | 500.000    | 640.000       |
| Required Revenue Increase (\$) | 300.000    | 67.200      | 79,700     | 117.300    | 35.800        |
| Required Increase (%)          | 14%        | 42%         | 10%        | 23%        | 6%            |